Abstract

This paper investigated key factors influencing energy consumption in the microextrusion process. The considered factors were: extrusion ratio (ER), die angle (α), billet length (BL), bearing length (LB), coefficient of friction (COF), and die shift (DS). The finite element simulation was carried out to determine the extrusion energy required to complete one extrusion cycle. The simulation results showed that the increased values of all the considered factors (except the die shift) led to increased extrusion energy. The results also provided percentages of energy variation in steps, which helped evaluate the energy savings with regards to the crucial other production considerations. The percentage increase in energy consumption in the lower ER values was considered higher than those of, the higher ER values. Increasing die angle (α) from 60 to 90 deg barely affected the consumed energy. The highest increase percentage of extrusion energy was found while increasing billet lengths (BL) from 3.00 mm to 4.00 mm. The lower bearing length (LB) values offered lower consumed energy. The consumed extrusion energy linearly increased with COF. The die shift (DS) did not affect the extrusion energy, but the final part geometry (curved pins). The results and analysis from this study could be used to potential energy savings and overall production costs of the microextrusion process.

References

1.
Cullen
,
J. M.
, and
Allwood
,
J.
,
2013
, “
Mapping the Global Flow of Aluminum: From Liquid Aluminum to End-Use Goods
,”
Environ. Sci. Technol.
,
47
(
7
), pp.
3057
3064
.10.1021/es304256s
2.
Ashkenazi
,
D.
,
2019
, “
How Aluminum Changed the World: A Metallurgical Revolution Through Technological and Cultural Perspectives
,”
Technol. Forecast. Soc. Change
,
143
, pp.
101
113
.10.1016/j.techfore.2019.03.011
3.
Parasiz
,
S. A.
,
Kinsey
,
B.
,
Krishnan
,
N.
,
Cao
,
J.
, and
Li
,
M.
,
2007
, “
Investigation of Deformation Size Effects During Microextrusion
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
690
697
.10.1115/1.2738107
4.
Krishnan
,
N.
,
Cao
,
J.
, and
Dohda
,
K.
,
2007
, “
Study of the Size Effect on Friction Conditions in Micro-Extrusion: Part 1 – Micro-Extrusion Experiments and Analysis
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
669
676
.10.1115/1.2386207
5.
Mori
,
L.
,
Krishnan
,
N.
,
Cao
,
J.
, and
Espinosa
,
H.
,
2007
, “
Study of the Size Effects and Friction Conditions in Micro-Extrusion: Part II—Size Effect in Dynamic Friction for Brass- Steel Pairs
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
677
689
.10.1115/1.2738131
6.
Rosochowski
,
A.
,
Presz
,
W.
,
Olejnik
,
L.
, and
Richert
,
M.
,
2007
, “
Micro-Extrusion of Ultra-Fine Grained Aluminium
,”
Int. J. Adv. Manuf. Technol.
,
33
(
1–2
), pp.
137
146
.10.1007/s00170-007-0955-6
7.
Parasız
,
S. A.
,
Kinsey
,
B. L.
,
Mahayatsanun
,
N.
, and
Cao
,
J.
,
2011
, “
Effect of Specimen Size and Grain Size on Deformation in Microextrusion
,”
J. Manuf. Process.
,
13
(
2
), pp.
153
159
.10.1016/j.jmapro.2011.05.002
8.
Chan
,
W. L.
,
Fu
,
M. W.
, and
Yang
,
B.
,
2011
, “
Study of Size Effect in Micro-Extrusion Process of Pure Copper
,”
Mater. Des.
,
32
(
7
), pp.
3772
3782
.10.1016/j.matdes.2011.03.045
9.
Kuhfuss
,
B.
,
Schattmann
,
C.
,
Jahn
,
M.
,
Schmidt
,
A.
,
Vollertsen
,
F.
,
Moumi
,
E.
,
Schenck
,
C.
,
Herrmann
,
M.
,
Ishkina
,
S.
,
Rathmann
,
L.
, and
Lukas
,
H.
,
2020
, “
Micro Forming Processes
,”
Cold Micro Metal Forming. Lecture Notes in Production Engineering
,
Springer
,
Cham
.
10.
Fu
,
M. W.
, and
Chan
,
W. L.
,
2014
, “
Size Effects in Micro-Scaled Plastic Deformation
,”
Micro-Scaled Products Development Via Microforming
,
Springer
,
London
, pp.
9
55
.
11.
Nanthakumar
,
S.
, and
Rajenthirakumar
,
D.
,
2019
, “
Influence of Grain Size on Deformational Behavior in Microextrusion Process
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
3
), pp.
41
136
.10.1007/s40430-019-1642-x
12.
Jo
,
H.-H.
,
Cho
,
H.
,
Lee
,
K.-W.
, and
Kim
,
Y.-J.
,
2002
, “
Extrudability Improvement and Energy Consumption Estimation in Al Extrusion Process of a 7003 Alloy
,”
J. Mater. Process. Technol.
,
130–131
, pp.
407
410
.10.1016/S0924-0136(02)00723-9
13.
Al-Smadi
,
A.
,
As'ad
,
S.
, and
Massarweh
,
W.
,
2007
, “
Identification and Analysis of the Power Consumption for Aluminum Extrusion Process
,”
Proceedings of the 15th Mediterranean Conference on Control & Automation
, Athens, Greece, July
27
29
.10.1109/MED.2007.4433768
14.
Jeong
,
M.-S.
,
Lee
,
S.-Y.
,
Lee
,
I.-K.
,
Lee
,
S.-K.
,
Kim
,
D. H.
,
Cho
,
Y.-J.
, and
Ko
,
D.-C.
,
2014
, “
Green Alternative Aluminum Extrusion Process Through Process Convergence
,”
Int. J. Precis. Eng. Manuf.
,
15
(
6
), pp.
1173
1177
.10.1007/s12541-014-0453-3
15.
Saboori
,
M.
,
Bakhshi-Jooybari
,
M.
,
Noorani-Azad
,
M.
, and
Gorji
,
A.
,
2006
, “
Experimental and Numerical Study of Energy Consumption in Forward and Backward Rod Extrusion
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
612
616
.10.1016/j.jmatprotec.2006.04.031
16.
Noh
,
J. H.
, and
Hwang
,
B. B.
,
2017
, “
Work Efficiency in a Double Cup Extrusion Process
,”
Int. J. Precis. Eng. Manuf.
,
18
(
3
), pp.
407
414
.10.1007/s12541-017-0049-9
17.
Funazuka
,
T.
,
Takatsuji
,
N.
,
Dohda
,
K.
, and
Aizawa
,
T.
,
2018
, “
Effect of Grain Size on Formability in Micro-extrusion-Research on Forward-Backward Micro-Extrusion of Aluminum Alloy 1st Report
,”
J. Jpn. Soc. Technol. Plasticity
,
59
(
684
), pp.
8
13
.10.9773/sosei.59.8
18.
Sucharitpwatskul
,
S.
,
Mahayotsanun
,
N.
,
Mahabunphachai
,
S.
,
Funazuka
,
T.
,
Takatsuji
,
N.
, and
Dohda
,
K.
,
2016
, “
Effects of Friction Models, Geometry and Position of Tool on Curving Tendency of Micro-Extrusion 6063 Aluminum Alloy Pins
,”
International Conference on Engineering Tribology and Applied Technology
(
ICETAT 2016
),
Taiwan Society of Tribology Technology (TSTT)
,
Taipei, Taiwan
, Nov. 4–6, p.
85
.10.4028/www.scientific.net/KEM.739.135
19.
Sucharitpwatskul
,
S.
,
Mahabunphachai
,
S.
,
Takatsuji
,
N.
,
Dohda
,
K.
,
Watanabe
,
I.
, and
Mahayotsanun
,
N.
,
2016
, “
Investigation of Friction Models in Micro-Extrusion of 6063 Aluminum Alloys
,”
7th International Conference on Tribology in Manufacturing Processes (ICTMP 2016)
, Phuket, Thailand, Feb. 28–Mar. 2, pp.
229
237
.https://samurai.nims.go.jp/proceedings/840feea6-5c9e-4f20-a40d-d9fc696c2aa5?locale=en
You do not currently have access to this content.