Presently surface microtexturing has found many promising applications in the fields of tribology, biomedical engineering, metal cutting, and other functional or topographical surfaces. Most of these applications are material-specific, which necessitates the need for a texturing and machining process that surpasses the limitations posed by a certain class of materials that are difficult to process by laser ablation, owing to their optical or other surface or bulk characteristics. Laser induced plasma micromachining (LIPMM) has emerged as a promising alternative to direct laser ablation for micromachining and microtexturing, which offers superior machining characteristics while preserving the resolution, accuracy and tool-less nature of laser ablation. This study is aimed at understanding the capability of LIPMM process to address some of the issues faced by pulsed laser ablation in material processing. This paper experimentally demonstrates machining of optically transmissive, reflective, and rough surface materials using LIPMM. Apart from this, the study includes machining of conventional metals (nickel and titanium) and polymer (polyimide), to demonstrate higher obtainable depth and reduced heat-affected distortion around microfeatures machined by LIPMM, as compared to laser ablation.

References

1.
Bos
,
R.
,
van der Mei
,
H. C.
,
Gold
,
J.
, and
Busscher
,
H. J.
,
2000
, “
Retention of Bacteria on a Substratum Surface With Micro-Patterned Hydrophobicity
,”
FEMS Microbiol. Lett.
,
189
, pp.
311
315
.10.1111/j.1574-6968.2000.tb09249.x
2.
Papet
,
P.
,
Nichiporuk
,
O.
,
Kaminski
,
A.
,
Rozier
,
Y.
,
Kraiem
,
J.
,
Lelievre
,
J. F.
,
Chaumartin
,
A.
,
Fave
,
A.
,
Lemiti
,
M.
,
2006
, “
Pyramidal Texturing of Silicon Solar Cell With TMAH Chemical Anisotropic Etching
,”
Sol. Energy Mater. Sol. Cells
,
90
, pp.
2319
2328
.10.1016/j.solmat.2006.03.005
3.
Nakano
,
M.
,
Korenaga
,
A.
,
Korenaga
,
A.
,
Miyake
,
K.
,
Murakami
,
T.
,
Ando
,
Y.
,
Usami
,
H.
,
Sasaki
,
S.
,
2007
, “
Applying Micro-Texture to Cast Iron Surfaces to Reduce the Friction Coefficient Under Lubricated Conditions
,”
Tribol. Lett.
,
28
, pp.
131
137
.10.1007/s11249-007-9257-2
4.
Davis
,
T.
,
Zhou
,
R.
,
Pallav
,
K.
,
Beltran
,
M.
,
Cao
,
J.
,
Ehmann
,
K.
,
Wang
,
Q. J.
,
Xia
,
Z. C.
,
Talwar
,
R.
, and
Lederich
,
R.
,
2008
, “
Experimental Friction Study of Micro-Scale Laser-Textured Surfaces
,”
International Workshop on Microfactories
,
Evanston, IL
.
5.
Han
,
P.
,
Pallav
,
K.
, and
Ehmann
,
K.
,
2012
Force Model for Needle-Tissue Interaction
,”
ASME
2012 International Manufacturing Science and Engineering Conference Collocated With the 40th North American Manufacturing Research Conference and in Participation With the International Conference on Tribology Materials and Processing
,
Notre Dame
, IN, Jun. 4–8, pp.
51
58
.10.1115/MSEC2012-7257
6.
Han
,
P.
,
Pallav
,
K.
,
Guo
,
P.
, and
Ehmann
,
K. F.
,
2011
, “
Medical Needle Insertion: Effects of Needle Tip and Surface Texturing
,”
6th International Conference on Micro-Manufacturing
, Tokyo, Japan.
7.
Geiger
,
M.
,
Popp
,
U.
, and
Engel
,
U.
,
2002
, “
Excimer Laser Micro Texturing of Cold Forging Tool Surfaces—Influence on Tool Life
,”
CIRP Ann.-Manuf. Technol.
,
51
, pp.
231
234
.10.1016/S0007-8506(07)61506-6
8.
Hilleman
,
T. B.
,
2007
, “
Vehicle Drag Reduction With Air Scoop Vortex Impeller and Trailing Edge Surface Texture Treatment
,” U.S. Patent No. 7,192,077.
9.
Gogte
,
S.
,
Vorobieff
,
P.
,
Truesdell
,
R.
,
Mammoli
,
A.
,
van Swol
,
F.
,
Shah
,
P.
, and
Brinker
,
C. J.
,
2005
, “
Effective Slip on Textured Superhydrophobic Surfaces
,”
Phys. Fluids
,
17
, p.
051701
.10.1063/1.1896405
10.
Uriarte
,
L.
,
Herrero
,
A.
,
Ivanov
,
A.
,
Oosterling
,
H.
,
Staemmler
,
L.
,
Tang
,
P. T.
, and
Allen
,
D.
,
2006
, “
Comparison Between Microfabrication Technologies for Metal Tooling
,”
Proc. Inst. Mech. Eng., Part C
,
220
, pp.
1665
1676
.10.1243/09544062JMES220
11.
Pallav
,
K.
,
Han
,
P.
,
Ramkumar
,
J.
,
Nagahanumaiah
, and
Ehmann
,
K. F.
,
2013
, “
Comparative Assessment of the Laser Induced Plasma Micromachining and the Micro-EDM Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011001
.10.1115/1.4025391
12.
Farson
,
D. F.
, and
Ready
,
J. F.
,
2001
,
LIA Handbook of Laser Materials Processing
,
Magnolia Publishing
, Pineville, LA.
13.
Steen
,
W. M.
, and
Mazumder
,
J.
,
2010
,
Laser Material Processing
,
Springer
, New York.
14.
Shirk
,
M. D.
, and
Molian
,
P. A.
,
1998
, “
A Review of Ultrashort Pulsed Laser Ablation of Materials
,”
J. Laser Appl.
,
10
, pp.
18
28
.10.2351/1.521827
15.
Jiménez
,
J. R.
,
Anera
,
R.
,
Jiménez del Barco
,
L.
, and
Hita
,
E.
,
2002
, “
Effect on Laser-Ablation Algorithms of Reflection Losses and Nonnormal Incidence on the Anterior Cornea
,”
Appl. Phys. Lett.
,
81
, pp.
1521
1523
.10.1063/1.1502192
16.
Malhotra
,
R.
,
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2013
, “
Laser-Induced Plasma Micro-Machining (LIPMM) for Enhanced Productivity and Flexibility in Laser-Based Micro-Machining Processes
,”
CIRP Ann.-Manuf. Technol.
,
62
(
1
), pp.
211
214
.10.1016/j.cirp.2013.03.036
17.
Pallav
,
K.
, and
Ehmann
,
K. F.
,
2010
, “
Feasibility of Laser Induced Plasma Micro-Machining (LIP-MM)
,”
Precision Assembly Technologies and Systems
,
Springer
, Berlin Heidelberg, Germany, pp.
73
80
.
18.
Pallav
,
K.
,
2013
, “
Laser Induced Plasma Micro-Machining Process (LIP-MM)
,” Ph.D. thesis, Mechanical Engineering, Northwestern University, Evanston, IL.
19.
Pallav
,
K.
, and
Ehmann
,
K.
,
2010
, “
Laser-Induced Plasma Micro-Machining
,”
ISFA—International Symposium on Flexible Automation
,
Tokyo, Japan
.
20.
Pallav
,
K.
, and
Ehmann
,
K. F.
,
2010
, “
Laser Induced Plasma Micro-Machining
,”
ASME 2010 International Manufacturing Science and Engineering Conference
,
Corvallis, OR
, Jun. 13–17, pp.
363
369
.
21.
Pallav
,
K.
, and
Ehmann
,
K.
,
2010
, “
Numerical Simulation of the Laser Induced Plasma Micro-Machining Process (LIP-MM)
,”
International Workshop on Micro-Factories (IWMF2010)
,
Daejeon, Korea
.
22.
Pallav
,
K.
, and
Ehmann
,
K. F.
,
2010
, “
Laser Induced Plasma Micro-Machining
,”
ASME Conference Proceedings
, pp.
363
369
.
23.
Pallav
,
K.
,
Saxena
,
I.
, and
Ehmann
,
K.
, “
Comparative Assessment of the Laser Induced Plasma Micro-Machining (LIP-MM) and the Ultra-Short Pulsed Laser Ablation Processes
,”
ASME J. Micro- and Nano-Manuf.
(to be published).
24.
Pallav
,
K.
,
Saxena
,
I.
, and
Ehmann
,
K.
, “
Laser Induced Plasma Micro-Machining Process-Principles and Performance
,”
International Journal of Machine Tools and Manufacture
(to be published).
25.
Shore
,
P.
,
1995
, “
Machining of Optical Surfaces in Brittle Materials Using an Ultra-Precision Machine Tool
,” Ph.D. thesis, Cranfield University, Bedford, UK.
26.
Perry
,
M.
,
Stuart
,
B.
,
Banks
,
P.
,
Feit
,
M.
,
Yanovsky
,
V.
, and
Rubenchik
,
A.
,
1999
, “
Ultrashort-Pulse Laser Machining of Dielectric Materials
,”
J. Appl. Phys.
,
85
, pp.
6803
6810
.10.1063/1.370197
27.
Gattass
,
R. R.
, and
Mazur
,
E.
,
2008
, “
Femtosecond Laser Micromachining in Transparent Materials
,”
Nat. Photonics
,
2
, pp.
219
225
.10.1038/nphoton.2008.47
28.
Shirk
,
M.
, and
Molian
,
P.
,
1998
, “
A Review of Ultrashort Pulsed Laser Ablation of Materials
,”
J. Laser Appl.
,
10
, pp.
18
28
.10.2351/1.521827
29.
Barnes
,
W. L.
,
Dereux
,
A.
, and
Ebbesen
,
T. W.
,
2003
, “
Surface Plasmon Subwavelength Optics
,”
Nature
,
424
, pp.
824
830
.10.1038/nature01937
30.
Simon
,
P.
, and
Ihlemann
,
J.
,
1996
, “
Machining of Submicron Structures on Metals and Semiconductors by Ultrashort UV-Laser Pulses
,”
Appl. Phys. A
,
63
, pp.
505
508
.10.1007/BF01571681
31.
Ye
,
M.
, and
Grigoropoulos
,
C. P.
,
2001
, “
Time-of-Flight and Emission Spectroscopy Study of Femtosecond Laser Ablation of Titanium
,”
J. Appl. Phys.
,
89
, pp.
5183
5190
.10.1063/1.1360696
You do not currently have access to this content.