A reverse oscillatory flow (ROF) mixing system is discussed having a reaction channel 460 μm high by 152 mm wide for high flow rate processing of nanoparticle (NP) chemistries. The ROF system is demonstrated to produce CdS nanoparticles at a production rate of 115.7 g/h with a coefficient of variation (CV) for particle size down to 19%. These production rates are substantially higher than those achieved using other microchannel mixers while maintaining comparable size distributions. Advantages of the ROF approach include the use of larger microchannels which make the reactor easier to fabricate and less vulnerable to clogging.

References

1.
Tiwari
,
S. K.
, and
Paul
,
B. K.
,
2008
, “
Application of Nickel Nanoparticles in Diffusion Bonding of Stainless Steel Surfaces
,”
ASME International Manufacturing Science and Engineering Conference
, Vol.
2
, pp.
441
446
, Paper No. MSEC_ICMP2008-72151.
2.
Peterson
,
D. A.
,
Apte
,
S. V.
,
Narayanan
,
V.
, and
Schmitt
,
J.
, “
Numerical Modeling of Mini/Microchannel Reactor for Methane-Steam Reforming
,”
ASME 2010 Fluids Engineering Summer Meeting
, Montreal, QC, Canada.
3.
Coakley
,
K. M.
, and
McGehee
,
M. D.
,
2004
, “
Conjugated Polymer Photovoltaic Cells
,”
Chem. Mater.
,
16
, pp.
4533
4542
.10.1021/cm049654n
4.
Cho
,
K.
,
Wang
,
X. U.
,
Nie
,
S.
, and
Shin
,
D. M.
,
2008
, “
Therapeutic Nanoparticles for Drug Delivery in Cancer
,”
Clin. Cancer Res.
,
14
, pp.
1310
1316
.10.1158/1078-0432.CCR-07-1441
5.
Chang
,
C. H.
,
Paul
,
B. K.
,
Remcho
,
V. T.
,
Atre
,
S.
, and
Hutchison
,
J. E.
,
2007
, “
Synthesis and Post-Processing of Nanomaterials Using Microreaction Technology
,”
J. Nanopart. Res.
,
10
, pp.
965
980
.10.1007/s11051-007-9355-y
6.
Kumar
,
D. V. R.
,
Kasture
,
M.
,
Prabhune
,
A. A.
,
Ramana
,
C. V.
,
Prasad
,
B. L. V.
, and
Kulkarni
,
A. A.
,
2010
, “
Continuous Flow Synthesis of Functionalized Silver Nanoparticles Using Bifunctional Biosurfactants
,”
Green Chem.
,
12
, pp.
609
615
.10.1039/b919550e
7.
Nguyen
,
N.-T.
, and
Wu
,
Z.
,
2005
, “
Micromixers—A Review
,”
J. Micromech. Microeng.
,
15
(2), pp.
R1
R16
.10.1088/0960-1317/15/2/R01
8.
Peterson
,
D. A.
,
Palanisamy
,
B.
,
Eluri
,
R. T.
,
Padmavathi
,
C.
, and
Paul
,
B. K.
,
2013
, “
Continuous-Flow, High Production Rate, Liquid-Phase Synthesis of Nanoparticles
,”
Dekker Encyclopedia of Nanoscience and Nanotechnology
, Sergey Edward Lyshevski, ed.,
Taylor & Francis Group
, New York.
9.
Shalom
,
D.
,
Wootton
,
R. C.
,
Winkle
,
R. F.
,
Cottam
,
B. F.
,
Vilar
,
R.
,
Demello
,
A. J.
, and
Wilde
,
C. P.
,
2007
, “
Synthesis of Thiol Functionalized Gold Nanoparticles Using a Continuous Flow Microfluidic Reactor
,”
Mater. Lett.
,
61
, pp.
1146
1150
.10.1016/j.matlet.2006.06.072
10.
Tsunoyama
,
H.
,
Ichikuni
,
N.
, and
Tsukuda
,
T.
,
2008
, “
Microfluidic Synthesis and Catalytic Application of PVP-Stabilized, ∼1 nm Gold Clusters
,”
Langmuir
,
24
, pp.
11327
11330
.10.1021/la801372j
11.
Luty-Blocho
,
M.
,
Fitzner
,
K.
,
Hessel
,
V.
,
Löb
,
P.
,
Maskos
,
M.
,
Metzke
,
D.
, and
Wojnicki
,
M.
,
2011
, “
Synthesis of Gold Nanoparticles in an Interdigital Micromixer Using Ascorbic Acid and Sodium Borohydride as Reducers
,”
Chem. Eng. J.
,
171
, pp.
279
290
.10.1016/j.cej.2011.03.104
12.
Jin
,
H. D.
,
Garrison
,
A.
,
Tseng
,
T.
,
Paul
,
B. K.
, and
Chang
,
C. H.
,
2010
, “
High-Rate Synthesis of Phosphine-Stabilized Undecagold Nanoclusters Using a Multilayered Micromixer
,”
Nanotechnology
,
21
, p.
445604
.10.1088/0957-4484/21/44/445604
13.
Hoffmann
,
M.
,
Schlüter
,
M.
, and
Räbiger
,
N.
,
2006
, “
Experimental Investigation of Liquid–Liquid Mixing in T-Shaped Micro-Mixers Using μμ-LIF and μμ-PIV
,”
Chem. Eng. Sci.
,
61
, pp.
2968
2976
.10.1016/j.ces.2005.11.029
14.
Glasgow
,
I.
, and
Aubry
,
N.
,
2003
, “
Enhancement of Microfluidic Mixing Using Time Pulsing
,”
Lab Chip
,
3
, pp.
114
120
.10.1039/b302569a
15.
Khan
,
S. A.
,
Günther
,
A.
,
Schmidt
,
M. A.
, and
Jensen
,
K. F.
,
2004
, “
Microfluidic Synthesis of Colloidal Silica
,”
Langmuir
,
20
, pp.
8604
8611
.10.1021/la0499012
16.
Sugano
,
K.
,
Yoshimune
,
H.
,
Nakata
,
A.
,
Hirai
,
Y.
,
Tsuchiya
,
T.
, and
Tabata
,
O.
,
2011
, “
High-Speed Pulsed Mixing With High-Frequency Switching of Micropump Driving and Its Application to Nanoparticle Synthesis
,”
16th International Conference on Solid-State Sensors, Actuators and Microsystems Conference
, Beijing, June 5–9, pp.
1773
1776
.
17.
LaMer
,
V. K.
, and
Dinegar
,
R. H.
,
1950
, “
Theory, Production and Mechanism of Formation of Monodispersed Hydrosols
,”
J. Am. Chem. Soc.
,
72
, pp.
4847
4854
.10.1021/ja01167a001
18.
Zhao
,
H.
,
Wang
,
J. X.
,
Wang
,
Q. A.
,
Chen
,
J. F.
, and
Yun
,
J.
,
2007
, “
Controlled Liquid Antisolvent Precipitation of Hydrophobic Pharmaceutical Nanoparticles in a Microchannel Reactor
,”
Ind. Eng. Chem. Res.
,
46
, pp.
8229
8235
.10.1021/ie070498e
19.
Schwarzer
,
H.-C.
, and
Peukert
,
W.
,
2004
, “
Combined Experimental/Numerical Study on the Precipitation of Nanoparticles
,”
AIChE J.
,
50
, pp.
3234
3247
.10.1002/aic.10277
20.
Robb
,
D. T.
, and
Privman
,
V.
,
2008
, “
Model of Nanocrystal Formation in Solution by Burst Nucleation and Diffusional Growth
,”
Langmuir
,
24
, pp.
26
35
.10.1021/la702097g
21.
Mullaugh
,
K. M.
, and
Luther
,
G. W.
,
2010
, “
Growth Kinetics and Long-Term Stability of CdS Nanoparticles in Aqueous Solution Under Ambient Conditions
,”
J. Nanopart. Res.
,
13
, pp.
393
404
.10.1007/s11051-010-0045-9
22.
Huang
,
F.
,
Zhang
,
H.
, and
Banfield
,
J. F.
,
2003
, “
Two-Stage Crystal-Growth Kinetics Observed During Hydrothermal Coarsening of Nanocrystalline ZnS
,”
Nano Lett.
,
3
, pp.
373
378
.10.1021/nl025836+
23.
Christian
,
P.
, and
O'Brien
,
P.
,
2008
, “
Thermodynamic and Kinetic Control of Crystal Growth in CdS Nanomaterials
,”
J. Mater. Chem.
,
18
, pp.
1689
1693
.10.1039/b717656b
24.
Bilecka
,
I.
, and
Niederberger
,
M.
,
2010
, “
Microwave Chemistry for Inorganic Nanomaterials Synthesis
,”
Nanoscale
,
2
, pp.
1358
1374
.10.1039/b9nr00377k
25.
Jahn
,
A.
,
Reiner
,
J. E.
,
Vreeland
,
W. N.
,
DeVoe
,
D. L.
,
Locascio
,
L. E.
, and
Gaitan
,
M.
,
2008
, “
Preparation of Nanoparticles by Continuous-Flow Microfluidics
,”
J. Nanopart. Res.
,
10
, pp.
925
934
.10.1007/s11051-007-9340-5
26.
Shayeganfar
,
F.
,
Javidpour
,
L.
,
Taghavinia
,
N.
,
Reza Rahimi Tabar
,
M.
,
Sahimi
,
M.
, and
Bagheri-Tar
,
F.
,
2010
, “
Controlled Nucleation and Growth of CdS Nanoparticles by Turbulent Dispersion
,”
Phys. Rev. E
,
81
, p.
026304
.10.1103/PhysRevE.81.026304
27.
Sounart
,
T. L.
,
Safier
,
P. A.
,
Voigt
,
J. A.
,
Hoyt
,
J.
,
Tallant
,
D. R.
,
Matzke
,
C. M.
, and
Michalske
,
T. A.
,
2007
, “
Spatially-Resolved Analysis of Nanoparticle Nucleation and Growth in a Microfluidic Reactor
,”
Lab Chip
,
7
, pp.
908
915
.10.1039/b703810k
28.
Edel
,
J. B.
, and
Mello
,
A. J.
,
2003
, “
Single Particle Confocal Fluorescence Spectroscopy in Microchannels: Dependence of Burst Width and Burst Area Distributions on Particle Size and Flow Rate
,”
Anal. Sci.
,
19
, pp.
1065
1069
.10.2116/analsci.19.1065
29.
Hung
,
L.-H.
,
Choi
,
K. M.
,
Tseng
,
W. Y.
,
Tan
,
Y. C.
,
Shea
,
K. J.
, and
Lee
,
A. P.
,
2006
, “
Alternating Droplet Generation and Controlled Dynamic Droplet Fusion in Microfluidic Device for CdS Nanoparticle Synthesis
,”
Lab Chip
,
6
, pp.
174
178
.10.1039/b513908b
30.
Valencia
,
P. M.
,
Basto
,
P. A.
,
Zhang
,
L.
,
Rhee
,
M.
,
Langer
,
R.
,
Farokhzad
,
O. C.
, and
Karnik
,
R.
,
2010
, “
Single-Step Assembly of Homogenous Lipid-Polymeric and Lipid-Quantum Dot Nanoparticles Enabled by Microfluidic Rapid Mixing
,”
ACS Nano
,
4
, pp.
1671
1679
.10.1021/nn901433u
31.
Peterson
,
D. A.
,
Palanisamy
,
B.
,
Eluri
,
R. T.
,
Padmavathi
,
C.
, and
Paul
,
B. K.
,
2013
, “
Micromixing Strategies for Continuous-Flow Liquid-Phase Reacting Chemistries
,”
Dekker Encyclopedia of Nanoscience and Nanotechnology
,
Taylor & Francis Group
, New York.
32.
Engler
,
M.
,
2004
, “
Numerical and Experimental Investigations on Liquid Mixing in Static Micromixers
,”
Chem. Eng. J.
,
101
, pp.
315
322
.10.1016/j.cej.2003.10.017
33.
Kockmann
,
N.
,
Kiefer
,
T.
,
Engler
,
M.
, and
Woias
,
P.
,
2006
, “
Convective Mixing and Chemical Reactions in Microchannels With High Flow Rates
,”
Sens. Actuators, B
,
117
, pp.
495
508
.10.1016/j.snb.2006.01.004
34.
Bothe
,
D.
,
Stemich
,
C.
, and
Warnecke
,
H. J.
,
2008
, “
Computation of Scales and Quality of Mixing in a T-Shaped Microreactor
,”
Comput. Chem. Eng.
,
32
, pp.
108
114
.10.1016/j.compchemeng.2007.08.001
35.
Ehrfeld
,
W.
,
Golbig
,
K.
,
Hessel, V., Löwe
,
H.
, and
Richter
,
T.
,
1999
, “
Characterization of Mixing in Micromixers by a Test Reaction: Single Mixing Units and Mixer Arrays
,”
Ind. Eng. Chem. Res
,
38
, pp.
1075
1082
.10.1021/ie980128d
36.
Adeosun
,
J. T.
, and
Lawal
,
A.
,
2005
, “
Mass Transfer Enhancement in Microchannel Reactors by Reorientation of Fluid Interfaces and Stretching
,”
Sens. Actuators, B
,
110
, pp.
101
111
.10.1016/j.snb.2005.01.016
37.
Sugano
,
K.
,
Uchida
,
Y.
,
Ichihashi
,
O.
,
Yamada
,
H.
,
Tsuchiya
,
T.
, and
Tabata
,
O.
,
2010
, “
Mixing Speed-Controlled Gold Nanoparticle Synthesis With Pulsed Mixing Microfluidic System
,”
Microfluid. Nanofluid.
,
9
, pp.
1165
1174
.10.1007/s10404-010-0637-9
38.
Peterson
,
D. A.
,
Garrison
,
A. E.
, and
Paul
,
B. K.
,
2011
, “
Evaluation of a Reverse Oscillatory Flow Microreactor Design for the Synthesis of Uniformly-Sized Nanoparticles
,”
International Manufacturing Science and Engineering Conference
, Corvallis, OR.
39.
Peterson
,
D. A.
,
2010
, “
Numerical Simulation of Micro/Mini-Channel Based Methane-Steam Reformer
,” M.S. thesis, Department of Mechanical Engineering, Oregon State University, Corvallis, OR.
40.
Wong
,
S.
,
Ward
,
M. C.
, and
Wharton
,
C. W.
,
2004
, “
Micro T-Mixer as a Rapid Mixing Micromixer
,”
Sens. Actuators, B
,
100
, pp.
359
379
.10.1016/j.snb.2004.02.008
41.
Chang
,
C. C.
, and
Yang
,
R. J.
,
2004
, “
Computational Analysis of Electrokinetically Driven Flow Mixing in Microchannels With Patterned Blocks
,”
J. Micromech. Microeng.
,
14
, pp.
550
558
.10.1088/0960-1317/14/4/016
42.
Yang
,
J.-T.
,
Huang
,
K. J.
, and
Lin
,
Y. C.
,
2005
, “
Geometric Effects on Fluid Mixing in Passive Grooved Micromixers
,”
Lab Chip
,
5
, pp.
1140
1147
.10.1039/b500972c
43.
Bothe
,
D.
,
Stemich
,
C.
, and
Warnecke
,
H. J.
,
2006
, “
Fluid Mixing in a T-Shaped Micro-Mixer
,”
Chem. Eng. Sci.
,
61
, pp.
2950
2958
.10.1016/j.ces.2005.10.060
44.
Kurian
,
P. A.
,
Vijayan
,
C.
,
Sathiyamoorthy
,
K.
,
Sandeep
,
C. S.
, and
Philip
,
R.
,
2007
, “
Excitonic Transitions and Off-Resonant Optical Limiting in CdS Quantum Dots Stabilized in a Synthetic Glue Matrix
,”
Nanoscale Res. Lett.
,
2
(
11
), pp.
561
568
.10.1007/s11671-007-9099-8
45.
Edelstein
,
A. S.
, and
Cammaratra
,
R. C.
,
1998
,
Nanomaterials: Synthesis, Properties and Applications
, Vol.
1
,
CRC Press
, New York.
46.
Seoudi
,
R.
,
Shabaka
,
A. A.
,
Kamal
,
M.
,
Abdelrazek
,
E. M.
, and
Eisa
,
W.
,
2012
, “
Dependence of Spectroscopic and Electrical Properties on the Size of Cadmium Sulfide Nanoparticles
,”
Physica E
,
45
, pp.
47
55
.10.1016/j.physe.2012.07.006
You do not currently have access to this content.