Abstract

In this study, we propose an alternative, low-cost, packaging method using both inkjet and aerosol jet printing (AJP) to fabricate functional interconnects for custom die-level packages assembled on printed circuit boards (PCBs). Our process involves the manufacturing of a stacked structure with insulating and conducting layers, fabricated using inkjet and aerosol jet printing, respectively. In the first part of the study, we characterized UV adhesive deposition on the standard resin-coated PCB to acquire the optimal parameters necessary for the fabrication of the insulating layer with thicknesses around 100 μm. In the second part of our study, we developed a precise method for printing silver conducting lines using an aerosol jet printer, enabling the realization of structures with features as small as 50 μm on nonplanar surfaces. The insulating part of the microelectromechanical systems (MEMS)/PCB structure serves as a ramp ensuring continuity of the aerosol jet printed connection between the PCB and the Si die. A 1 cm × 1 cm Si chip with a custom MEMS microrobot was used to demonstrate the feasibility and flexibility of our approach in practice. After fabrication, we evaluated the interconnects for conductivity and repeatability. The packaging and inspection process was carried out using Nexus, a unique robotic system integrating additive manufacturing, robotic transport, and metrology. The results show that we successfully fabricated printed interconnects between copper PCB pads and Si die cleanroom fabricated gold pads, while electrical characterization revealed resistances in the range of 1–10 Ω. Our approach can be utilized in the manufacturing of electrical interconnects for custom devices on different substrates, including traditional and flexible PCBs. Furthermore, the applied printing techniques enable the use of other insulating or conducting inks and the formation of structures of custom geometries across a wide range of scales—20 μm to 1 mm.

References

1.
Wallace
,
D.
,
Hayes
,
D.
,
Chen
,
T.
,
Shah
,
V.
,
Radulescu
,
D.
,
Cooley
,
P.
,
Wachtler
,
K.
, and
Nallani
,
A.
,
2004
, “
THINK ADDITIVE: Ink-Jet Deposition of Materials for MEMS Packaging
,”
Sixth Topical Workshop on Packaging of MEMS and Related Micro-Nano-Bio Integrated Systems
, Long Beach, CA, Nov. 18–20, pp.
1
7
.10.13140/2.1.1622.1122
2.
Chang
,
J. S.
,
Facchetti
,
A. F.
, and
Reuss
,
R.
,
2017
, “
A Circuits and Systems Perspective of Organic/Printed Electronics: Review, Challenges, and Contemporary and Emerging Design Approaches
,”
IEEE J. Emerging Sel. Top. Circuits Syst.
,
7
(
1
), pp.
7
26
.10.1109/JETCAS.2017.2673863
3.
Saengchairat
,
N.
,
Tran
,
T.
, and
Chua
,
C. K.
,
2017
, “
A Review: Additive Manufacturing for Active Electronic Components
,”
Virtual Phys. Prototyping
,
12
(
1
), pp.
31
46
.10.1080/17452759.2016.1253181
4.
Derby
,
B.
,
2010
, “
Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
395
414
.10.1146/annurev-matsci-070909-104502
5.
Kwon
,
K. S.
,
Rahman
,
M. K.
,
Phung
,
T. H.
,
Hoath
,
S. D.
,
Jeong
,
S.
, and
Kim
,
J. S.
,
2020
, “
Review of Digital Printing Technologies for Electronic Materials
,”
Flexible Printed Electron.
,
5
(
4
), p.
043003
.10.1088/2058-8585/abc8ca
6.
Minemawari
,
H.
,
Yamada
,
T.
,
Matsui
,
H.
,
Tsutsumi
,
J.
,
Haas
,
S.
,
Chiba
,
R.
,
Kumai
,
R.
, and
Hasegawa
,
T.
,
2011
, “
Inkjet Printing of Single-Crystal Films
,”
Nature
,
475
(
7356
), pp.
364
367
.10.1038/nature10313
7.
Sherehiy
,
A.
,
Montenegro
,
A.
,
Wei
,
D.
, and
Popa
,
D. O.
,
2021
, “
Adhesive Deposition Process Characterization for Microstructure Assembly
,”
ASME
Paper No. MSEC2021-63929.10.1115/MSEC2021-63929
8.
Zikulnig
,
J.
,
Chang
,
S.
,
Bito
,
J.
,
Rauter
,
L.
,
Roshanghias
,
A.
,
Carrara
,
S.
, and
Kosel
,
J.
,
2023
, “
Printed Electronics Technologies for Additive Manufacturing of Hybrid Electronic Sensor Systems
,”
Adv. Sens. Res.
,
2
(
7
), p.
2200073
.10.1002/adsr.202200073
9.
Seifert
,
T.
,
Baum
,
M.
,
Roscher
,
F.
,
Wiemer
,
M.
, and
Gessner
,
T.
,
2015
, “
Aerosol Jet Printing of Nano Particle Based Electrical Chip Interconnects
,”
Mater. Today Proc.
,
2
(
8
), pp.
4262
4271
.10.1016/j.matpr.2015.09.012
10.
Lu
,
S.
,
Cardenas
,
J. A.
,
Worsley
,
R.
,
Williams
,
N. X.
,
Andrews
,
J. B.
,
Casiraghi
,
C.
, and
Franklin
,
A. D.
,
2019
, “
Flexible, Print-in-Place 1D–2D Thin-Film Transistors Using Aerosol Jet Printing
,”
ACS Nano
,
13
(
10
), pp.
11263
11272
.10.1021/acsnano.9b04337
11.
Wilkinson
,
N. J.
,
Smith
,
M. A. A.
,
Kay
,
R. W.
, and
Harris
,
R. A.
,
2019
, “
A Review of Aerosol Jet Printing—A Non-Traditional Hybrid Process for Micro-Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
105
(
11
), pp.
4599
4619
.10.1007/s00170-019-03438-2
12.
Ratnayake
,
D.
,
Curry
,
A.
,
Qu
,
C.
,
Wei
,
D.
,
Gerber
,
E.
, and
Walsh
,
K.
,
2023
, “
Optimizing the Conductivity of a New Nanoparticle Silver Ink for Aerosol Jet Printing and Demonstrating Its Use as a Strain Gauge
,”
IEEE J. Flexible Electron.
,
2
(
3
), pp.
248
255
.10.1109/JFLEX.2023.3234458
13.
Olalekan
,
O. O.
,
Harris
,
B.
,
Sills
,
D.
,
Zhang
,
R.
,
Sherehiy
,
A.
,
Tofangchi
,
A.
,
Wei
,
D.
, and
Popa
,
D. O.
,
2023
, “
Design, Fabrication, and Characterization of Inkjet-Printed Organic Piezoresistive Tactile Sensor on Flexible Substrate
,”
MDPI Sens.
,
23
(
19
), pp.
8280
8305
.10.3390/s23198280
14.
Olalekan
,
O. O.
,
Zhang
,
R.
,
Yang
,
Z.
,
Goulet
,
B.
, and
Popa
,
D. O.
,
2021
, “
Organic Piezoresistive Robotic Skin Sensor Fabrication, Integration and Characterization
,”
ASME
Paper No. MSEC2021-63942.10.1115/MSEC2021-63942
15.
Wei
,
D.
,
Tofangchi
,
A.
,
Sherehiy
,
A.
,
Saadatzi
,
M. H.
,
Alqatamin
,
M.
,
Hsu
,
K.
, and
Popa
,
D. O.
,
2021
, “
Precision Evaluation of Nexus, a Custom Multi-Robot System for Microsystem Integration
,”
ASME
Paper No. MSEC2021-63687.10.1115/MSEC2021-63687
16.
Wei
,
D.
,
Zhang
,
R.
,
Lin
,
J. T.
,
Ratnayake
,
D.
,
Olowo
,
O. O.
,
Nimon
,
A. S.
,
Alqatamin
,
M.
,
Sherehiy
,
A.
, and
Popa
,
D. O.
,
2024
, “
Precision Evaluation of Tactile Sensor Fabrication Using a Robotic Additive Manufacturing Platform
,”
J. Micro Bio Rob.
,
20
(
1
), pp.
1
14
.10.1007/s12213-024-00166-z
17.
Gengenbach
,
U.
,
Ungerer
,
M.
,
Koker
,
L.
,
Reichert
,
K. M.
,
Stiller
,
P.
,
Allgeier
,
S.
,
Köhler
,
B.
,
Zhu
,
X.
,
Huang
,
C.
, and
Hagenmeyer
,
V.
,
2020
, “
Automated Fabrication of Hybrid Printed Electronic Circuit
,”
Mechatronics
,
70
(
1
), p.
102403
.10.1016/j.mechatronics.2020.102403
18.
Ghahremani
,
A. H.
,
Ratnayake
,
D.
,
Sherehiy
,
A.
,
Popa
,
D. O.
, and
Druffel
,
T.
,
2021
, “
Automated Fabrication of Perovskite Photovoltaics Using Inkjet Printing and Intense Pulse Light Annealing
,”
Energy Technol.
,
9
(
10
), p.
2100452
.10.1002/ente.202100452
19.
Zhang
,
R.
,
Sherehiy
,
A.
,
Wei
,
D.
, and
Popa
,
D. O.
,
2019
, “
Design and Characterization of Solid Articulated Four Axes Microrobot
,”
J. Micro Bio Rob.
,
15
(
2
), pp.
119
131
.10.1007/s12213-019-00118-y
20.
Zhang
,
R.
,
Klotz
,
J. F.
,
Wei
,
D.
,
Yang
,
Z.
,
Sherehiy
,
A.
,
Saadatzi
,
M. N.
, and
Popa
,
D. O.
,
2020
, “
SolarPede: A Stick-and-Slip, Light-Powered, Mobile Micro-Crawler
,”
J. Micro Bio Rob.
,
16
(
1
), pp.
1
12
.10.1007/s12213-020-00131-6
21.
Wei
,
D.
,
Hall
,
M. B.
,
Sherehiy
,
A.
, and
Popa
,
D. O.
,
2020
, “
Design and Evaluation of Human–Machine Interface for NEXUS: A Custom Microassembly System
,”
ASME J. Micro Nano Sci. Eng.
,
8
(
4
), p.
041011
.10.1115/1.4049667
22.
Alqatamin
,
M.
,
Ritz
,
B.
,
Sherehiy
,
A.
,
Jackson
,
D.
,
Zhang
,
R.
,
Chowdhury
,
S. S.
,
Wei
,
D.
, and
Popa
,
D. O.
,
2021
, “
Teleoperation Interface for sAFAM, a Solid Articulated Four Axes Microrobot
,”
ASME
Paper No. DETC2021-71552.10.1115/DETC2021-71552
23.
Warn
,
C.
,
Sherehiy
,
A.
,
Alqatamin
,
M.
,
Ritz
,
B.
,
Zhang
,
R.
,
Chowdhury
,
S. S.
,
Wei
,
D.
, and
Popa
,
D. O.
,
2022
, “
Machine Vision Tracking and Automation of a Microrobot (sAFAM)
,”
ASME
Paper No. MSEC2022-85424.10.1115/MSEC2022-85424
24.
Dawes
,
J.
, and
Johnston
,
M. L.
,
2022
, “
Direct-Write 3D Printing of Interconnects for Fan-Out Wafer-Level Packaging
,” 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (
FLEPS
), Vienna, Austria, July 10–13, pp.
1
4
.10.1109/FLEPS53764.2022.9781559
25.
Roshanghias
,
A.
,
Dreissigacker
,
M.
,
Gradzka-Kurzaj
,
I.
,
Binder
,
A.
,
Ramelow
,
M. S.
, and
Witczak
,
L.
,
2022
, “
High-Resolution Printing of Redistribution Layers for Fan-Out Wafer-Level Packaging by Using Ultra-Precise Micro-Deposition Technology
,” 2022 IEEE Ninth Electronics System-Integration Technology Conference (
ESTC
), Sibiu, Romania, Sept. 13–16, pp.
254
258
.10.1109/ESTC55720.2022.9939451
26.
Jacobs
,
K. P.
,
2023
, “
Inkjet-Printed Electrical Interconnects for High Resolution Integrated Circuit Diagnostics
,”
Commun. Eng.
,
2
(
1
), p.
21
.10.1038/s44172-023-00073-4
27.
Khorramdel
,
B.
,
Torkkeli
,
A.
, and
Mantysalo
,
M.
,
2018
, “
Electrical Contacts in SOI MEMS Using Aerosol Jet Printing
,”
IEEE J. Electron Devices Soc.
,
6
, pp.
34
40
.10.1109/JEDS.2017.2764498
28.
Stoukatch
,
S.
,
Laurent
,
P.
,
Dricot
,
S.
,
Axisa
,
F.
,
Seronveaux
,
L.
, and
Vandormael
,
D.
,
2012
, “
Evaluation of Aerosol Jet Printing (AJP) Technology for Electronic Packaging and Interconnect Technique
,”
2012 Fourth Electronic System-Integration Technology Conference
, Amsterdam, The Netherlands, Sept. 17–20, pp.
1
5
.10.1109/ESTC.2012.6542067
29.
Olowo
,
O. O.
,
Zhang
,
R.
,
Sherehiy
,
A.
,
Goulet
,
B.
,
Curry
,
A.
,
Wei
,
D.
,
Yang
,
Z.
,
Alqatamin
,
M.
, and
Popa
,
D. O.
,
2022
, “
Inkjet Printing of PEDOT: PSS Inks for Robotic Skin Sensors
,”
ASME
Paper No. MSEC2022-80989.10.1115/MSEC2022-80989
30.
Duineveld
,
P.
,
2003
, “
The Stability of Ink-Jet Printed Lines of Liquid With Zero Receding Contact Angle on a Homogeneous Substrate
,”
J. Fluid Mech.
,
477
, pp.
175
200
.10.1017/S0022112002003117
31.
Soltman
,
D.
, and
Subramanian
,
V.
,
2008
, “
Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect
,”
Langmuir
,
24
(
5
), pp.
2224
2231
.10.1021/la7026847
32.
Lambert
,
P.
,
2011
, “
Test Bed and Characterization
,”
Capillary Forces in Microassembly: Modeling, Simulation, Experiments, and Case Study
,
Springer
,
New York
, pp.
147
148
.
You do not currently have access to this content.