Abstract

This paper demonstrates the NeXus system, a multiscale robotic additive manufacturing platform developed at the Louisville Automation and Robotics Research Institute, as a rapid prototyping tool through additively manufacturing a multilayer flexible printed circuit board (FPC) with a printed strain sensor and soldered surface mounted devices (SMD). Manufacturing of the demonstrator requires the application and curing of multiple materials with specialized properties, tools for automated assembly, and software advances to streamline the process enabling the use of industry-standardized programs to command the NeXus system. Additive manufacturing processes supported by the NeXus include aerosol jet printing (AJP) for fine feature silver conducting lines, direct write ink-jet printing for insulating materials, and intense pulsed light (IPL) for curing materials between depositions. The NeXus system transports and manipulates parts using a six-degree-of-freedom (DOF) high-precision positioner. Solder paste deposition and pick-and-place (PnP) procedures are performed by a 4DOF Selective Compliance Articulated Robot Arm (SCARA). Conversion methods between traditional printed circuit board (PCB) design software and production-ready command scripts were developed to translate basic drawings into command scripts. Multilayer structures with AJP 50-μm wide lines, an insulating bridge with a thickness of around 100 μm, and SMDs soldered to silver AJP pads were integrated within the demonstrator. An operational amplifier and other SMDs reduce the complexity of the accompanying control circuit and amplify the sensor's response by 1830 times. The successful fabrication of the demonstrator FPC highlights the rapid prototyping ability of the NeXus system.

References

1.
Kodama
,
H.
,
1981
, “
Automatic Method for Fabricating a Three-Dimensional Plastic Model With Photo-Hardening Polymer
,”
Rev. Sci. Instrum.
,
52
(
11
), pp.
1770
1773
.10.1063/1.1136492
2.
Lengua
,
C. A. G.
,
2017
, “
History of Rapid Prototyping
,”
Rapid Prototyping in Cardiac Disease: 3D Printing the Heart
, Springer, Cham, Switzerland, pp.
3
7
.10.1007/978-3-319-53523-4_1
3.
Negi
,
S.
,
Dhiman
,
S.
, and
Sharma
,
R. K.
,
2013
, “
Basics, Applications and Future of Additive Manufacturing Technologies: A Review
,”
J. Manuf. Technol. Res.
,
5
(
1/2
), pp.
75
96
.https://www.researchgate.net/publication/281004567_Basics_applications_and_future_of_additive_manufacturing_technologies_A_review
4.
Kantola
,
V.
,
Kulovesi
,
J.
,
Lahti
,
L.
,
Lin
,
R.
,
Zavodchikova
,
M.
, and
Coatanéa
,
E.
,
2009
, “
1.3 Printed Electronics, Now and Future
,”
Bit Bang
,
63
, p.
204
.
5.
Suganuma
,
K.
,
2014
,
Introduction to Printed Electronics
, Vol. 74,
Springer Science & Business Media
, New York.
6.
Loner
,
T.
,
Neumann
,
A.
,
Bottcher
,
L.
,
Pahl
,
A.
,
Ostmann
,
A.
,
Aschenbrenner
,
R.
, and
Reichl
,
H.
,
2005
, “
Smart PCBs Manufacturing Technologies
,”
2005 Sixth International Conference on Electronic Packaging Technology
, Shenzhen, China, Aug. 30–Sept. 2, pp.
287
295
.10.1109/ICEPT.2005.1564633
7.
Tan
,
H. W.
,
Tran
,
T.
, and
Chua
,
C. K.
,
2016
, “
A Review of Printed Passive Electronic Components Through Fully Additive Manufacturing Methods
,”
Virtual Phys. Prototyping
,
11
(
4
), pp.
271
288
.10.1080/17452759.2016.1217586
8.
Brinker
,
K.
, and
Zoughi
,
R.
,
2022
, “
Tunable Chipless RFID Pressure Sensor Utilizing Additive Manufacturing
,” 2022 IEEE International Instrumentation and Measurement Technology Conference (
I2MTC
), Ottawa, ON, Canada, May 16–19, pp.
1
6
.10.1109/I2MTC48687.2022.9806554
9.
Jin
,
J.
,
Zhang
,
F.
,
Yang
,
Y.
,
Zhang
,
C.
,
Wu
,
H.
,
Xu
,
Y.
, and
Chen
,
Y.
,
2023
, “
Hybrid Multimaterial 3D Printing Using Photocuring-While-Dispensing
,”
Small
,
19
(
50
), p.
2302405
.10.1002/smll.202302405
10.
Yang
,
Y.
,
Li
,
S.
,
Xu
,
H.
,
Xu
,
Y.
, and
Chen
,
Y.
,
2022
, “
Fabrication of Flexible Microheater With Tunable Heating Capabilities by Direct Laser Writing and Selective Electrodeposition
,”
J. Manuf. Processes
,
74
, pp.
88
99
.10.1016/j.jmapro.2021.11.045
11.
Rahman
,
T.
,
Renaud
,
L.
,
Heo
,
D.
,
Renn
,
M.
, and
Panat
,
R.
,
2015
, “
Aerosol Based Direct-Write Micro-Additive Fabrication Method for Sub-mm 3D Metal-Dielectric Structures
,”
J. Micromech. Microeng.
,
25
(
10
), p.
107002
.10.1088/0960-1317/25/10/107002
12.
Paek
,
S. W.
,
Balasubramanian
,
S.
, and
Stupples
,
D.
,
2022
, “
Composites Additive Manufacturing for Space Applications: A Review
,”
Materials
,
15
(
13
), p.
4709
.10.3390/ma15134709
13.
Dong
,
Y.
,
Bao
,
C.
, and
Kim
,
W. S.
,
2018
, “
Sustainable Additive Manufacturing of Printed Circuit Boards
,”
Joule
,
2
(
4
), pp.
579
582
.10.1016/j.joule.2018.03.015
14.
Lall
,
P.
,
Narangaparambil
,
J.
,
Soni
,
V.
, and
Miller
,
S.
,
2020
, “
Sintering Process Conditions for Additive Printing of Multi-Layer Circuitry Aerosol-Jet Process in Conjunction With Nanoparticle Ink
,” 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 21–23, pp.
805
813
.10.1109/ITherm45881.2020.9190267
15.
Arnal
,
N.
,
Ketterl
,
T.
,
Vega
,
Y.
,
Stratton
,
J.
,
Perkowski
,
C.
,
Deffenbaugh
,
P.
,
Church
,
K.
, and
Weller
,
T.
,
2015
, “
3D Multi-Layer Additive Manufacturing of a 2.45 GHz RF Front End
,”
2015 IEEE MTT-S International Microwave Symposium
, Phoenix, AZ, May 17–22, pp.
1
4
.10.1109/MWSYM.2015.7167154
16.
Wei
,
D.
,
Tofangchi
,
A.
,
Sherehiy
,
A.
,
Saadatzi
,
M. H.
,
Alqatamin
,
M.
,
Hsu
,
K.
, and
Popa
,
D. O.
,
2021
, “
Precision Evaluation of NeXus, a Custom Multi-Robot System for Microsystem Integration
,”
ASME
Paper No. MSEC2021-63687.10.1115/MSEC2021-63687
17.
Olowo
,
O. O.
,
Zhang
,
R.
,
Sherehiy
,
A.
,
Goulet
,
B.
,
Curry
,
A.
,
Wei
,
D.
,
Yang
,
Z.
,
Alqatamin
,
M.
, and
Popa
,
D. O.
,
2022
, “
Inkjet Printing of PEDOT:PSS Inks for Robotic Skin Sensors
,”
ASME
Paper No. MSEC2022-80989.10.1115/MSEC2022-80989
18.
Sherehiy
,
A.
,
Montenegro
,
A.
,
Wei
,
D.
, and
Popa
,
D. O.
,
2021
, “
Adhesive Deposition Process Characterization for Microstructure Assembly
,”
ASME
Paper No. MSEC2021-63929.10.1115/MSEC2021-63929
19.
Ratnayake
,
D.
,
Curry
,
A.
, and
Walsh
,
K.
,
2021
, “
Demonstrating a New Ink Material for Aerosol Printing Conductive Traces and Custom Strain Gauges on Flexible Surfaces
,” 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (
FLEPS
), Manchester, UK, June 20–23, pp.
1
4
.10.1109/FLEPS51544.2021.9469773
20.
Olowo
,
O. O.
,
Harris
,
B.
,
Sills
,
D.
,
Zhang
,
R.
,
Sherehiy
,
A.
,
Tofangchi
,
A.
,
Wei
,
D.
, and
Popa
,
D. O.
,
2023
, “
Design, Fabrication, and Characterization of Inkjet-Printed Organic Piezoresistive Tactile Sensor on Flexible Substrate
,”
Sensors
,
23
(
19
), p.
8280
.10.3390/s23198280
21.
Wei
,
D.
,
Zhang
,
R.
,
Lin
,
J.-T.
,
Ratnayake
,
D.
,
Olowo
,
O. O.
,
Nimon
,
A. S.
,
Alqatamin
,
M.
,
Sherehiy
,
A.
, and
Popa
,
D. O.
,
2024
, “
Precision Evaluation of Tactile Sensor Fabrication Using a Robotic Additive Manufacturing Platform
,”
J. Micro Bio Rob.
,
20
(
1
), p.
1
.10.1007/s12213-024-00166-z
22.
Wei
,
D.
,
2022
, “
Design, Evaluation, and Control of Nexus: A Multiscale Additive Manufacturing Platform With Integrated 3D Printing and Robotic Assembly
,”
Master's thesis
, University of Louisville, Louisville, KY.10.18297/etd/3997
23.
Texas Instruments
,
2018
, “
INA821 35-uV Offset, 7-nV/Hz Noise, Low-Power, Precision Instrumentation Amplifier
,” Texas Instruments Incorporated, Dallas, TX, Report No. SBOS893D datasheet (revised June 2020).
24.
Jang
,
Y.-R.
,
Joo
,
S.-J.
,
Chu
,
J.-H.
,
Uhm
,
H.-J.
,
Park
,
J.-W.
,
Ryu
,
C.-H.
,
Yu
,
M.-H.
, and
Kim
,
H.-S.
,
2021
, “
A Review on Intense Pulsed Light Sintering Technologies for Conductive Electrodes in Printed Electronics
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
8
(
1
), pp.
327
363
.10.1007/s40684-020-00193-8
25.
Juric
,
D.
,
Hämmerle
,
S.
,
Gläser
,
K.
,
Eberhardt
,
W.
, and
Zimmermann
,
A.
,
2019
, “
Assembly of Components on Inkjet-Printed Silver Structures by Soldering
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
9
(
1
), pp.
156
162
.10.1109/TCPMT.2018.2855045
26.
Newport
,
2020
,
XPS-D Features Manual
, latest ed.,
MKS—Newport Corporation
,
Irvine, CA
.
27.
Nimon
,
A. S.
,
Sherehiy
,
A.
,
Alqatamin
,
M.
,
Wei
,
D.
, and
Popa
,
D. O.
,
2022
, “
Precision Evaluation of Large Payload SCARA Robot for PCB Assembly
,”
ASME
Paper No. MSEC2022-85534.10.1115/MSEC2022-85534
28.
EFD,
2023
, 794 Series Auger Valve Operating Manual, latest ed.,
Nordson Corporation
, Westlake, OH, accessed Nov. 11,
2024
, https://www.flumasys.com/wp-content/uploads/2019/09/Nordson_EFD_794_Operating_Manual.pdf
29.
EFD
, 2024, ValveMate 7094BL Auger Valve Controller Operating Manual, latest ed.,
EFD a Nordson Company
, Westlake, OH, accessed Nov. 11, 2024, https://images.bid-on-equipment.com/prod-documents/1769-ValveMate7094BLAugerValveControllerManual-0.pdf
You do not currently have access to this content.