Abstract

Recent advances have established electrochemical discharge machining (ECDM) as an effective alternative to electrical discharge machining (EDM) for producing microholes in conductive materials. However, ECDM leaves nonuniform layers, including recast layers and heat-affected zones, rendering it unsuitable for materials vital to aerospace, defence, and biomedical applications. To address this issue, the present work investigates a novel electrochemical machining (ECM)-based frugal engineering process known as simultaneous electrochemical and electrodischarge machining (SECEDM) for microhole fabrication. To evaluate the process effectiveness, the machining results of the SECEDM process were compared with ECDM, EDM, and ECM. The obtained results present the fundamental distinction between the process mechanism of SECEDM and ECDM. SECEDM has been reported to produce microholes with improved machined surfaces characterized by their freedom from recast layer and ECDM-induced defects. Moreover, SECEDM facilitated meticulously controlled high-speed anodic dissolution of work material, surpassing the material removal rate (MRR) achieved through ultrasonic-assisted ECDM (U-ECDM), ECM, and EDM processes by 2.67, 4.2, and 6.2 times, respectively. Furthermore, the substantial 67.72% and 68.82% reduction in the average machined hole diameter than ECM and U-ECDM, respectively, with a noteworthy 13.69% enhancement in average roundness error achieved while maintaining the repeatability accuracy with an accuracy range within ±0.009 mm through SECEDM process underscore SECEDM's accuracy and repeatability. In addition, lower surface roughness by 31.6% and 68% compared to ECM and EDM, along with reduced carbon and oxygen content as examined through energy dispersive X-ray (EDX) analysis, signifies the SECEDM process efficiency in microfabrication.

References

1.
Sharma
,
S.
,
Singh
,
T.
, and
Dvivedi
,
A.
,
2022
, “
Developments in Tandem Micro-Machining Processes to Mitigate the Machining Issues at Micron Level: A Systematic Review, Challenges and Future Opportunities
,”
Mach. Sci. Technol.
,
26
(
4
), pp.
515
570
.10.1080/10910344.2022.2129991
2.
Neugebauer
,
R.
,
Wabner
,
M.
,
Rentzsch
,
H.
, and
Ihlenfeldt
,
S.
,
2011
, “
Structure Principles of Energy Efficient Machine Tools
,”
CIRP J. Manuf. Sci. Technol.
,
4
(
2
), pp.
136
147
.10.1016/j.cirpj.2011.06.017
3.
Saini
,
D. K.
, and
Jha
,
P. K.
,
2023
, “
Fabrication of Aluminum Metal Matrix Composite Through Continuous Casting Route: A Review and Future Directions
,”
J. Manuf. Processes
,
96
, pp.
138
160
.10.1016/j.jmapro.2023.04.041
4.
Sharma
,
S.
,
Shamim
,
F. A.
,
Dvivedi
,
A.
,
Kumar
,
P.
, and
Singh
,
T.
,
2022
, “
Hybrid Machining of Metal Matrix Composites
,”
Fabrication and Machining of Advanced Materials and Composites
,
CRC Press
,
Boca Raton, FL
, pp.
235
254
.
5.
Kishi
,
R.
, and
Yan
,
J.
,
2020
, “
Electrical Discharge/Electrochemical Hybrid Machining Based on the Same Machine and Tool Electrode
,”
ASME J. Micro- Nano-Manuf.
,
8
(
1
), p.
010906
.10.1115/1.4046039
6.
Ahmed
,
S.
,
Speidel
,
A.
,
Murray
,
J. W.
,
Ahmed
,
N.
,
Cuttell
,
M.
, and
Clare
,
A. T.
,
2022
, “
Electrolytic-Dielectrics: A Route to Zero Recast Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
181
, p.
103941
.10.1016/j.ijmachtools.2022.103941
7.
Dhakar
,
K.
,
Kumar
,
R.
,
Katheria
,
A.
,
Nagdeve
,
L.
, and
Kumar
,
H.
,
2022
, “
Effect of Various Dielectric Fluids on Electric Discharge Machining (EDM): A Review
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
10
), p.
487
.10.1007/s40430-022-03778-3
8.
Liu
,
G.
,
Shi
,
J.
,
Yang
,
Y.
,
Gong
,
Z.
, and
Li
,
C.
,
2024
, “
Effects of Passivation Behavior on Micro-Electrochemical Machining (ECM) Performance of Stainless Steels With Different Metallographic Phases in NaNO3 and NaClO3 Solutions
,”
Int. J. Adv. Manuf. Technol.
,
130
(
7–8
), pp.
3867
3876
.10.1007/s00170-023-12934-5
9.
Saxena
,
K. K.
,
Qian
,
J.
, and
Reynaerts
,
D.
,
2018
, “
A Review on Process Capabilities of Electrochemical Micromachining and Its Hybrid Variants
,”
Int. J. Mach. Tools Manuf.
,
127
, pp.
28
56
.10.1016/j.ijmachtools.2018.01.004
10.
Han
,
W.
, and
Kunieda
,
M.
,
2019
, “
A Novel Method to Switch Machining Mode Between Micro-ECM and Micro-EDM Using Oxide Film on Surface of Tungsten Electrode
,”
Precis. Eng.
,
56
, pp.
455
465
.10.1016/j.precisioneng.2019.02.002
11.
Zhang
,
Y.
,
Xu
,
Z.
,
Wang
,
Y.
,
Ni
,
Q.
, and
Ling
,
X.
,
2020
, “
Surface-Improvement Mechanism of Hybrid Electrochemical Discharge Process Using Variable-Amplitude Pulses
,”
Chin. J. Aeronaut.
,
33
(
10
), pp.
2782
2793
.10.1016/j.cja.2019.09.003
12.
Nguyen
,
M. D.
,
Rahman
,
M.
, and
Wong
,
Y. S.
,
2012
, “
Simultaneous Micro-EDM and Micro-ECM in Low-Resistivity Deionized Water
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
55
65
.10.1016/j.ijmachtools.2011.11.005
13.
Zhang
,
Y.
,
Xu
,
Z.
,
Zhu
,
D.
, and
Xing
,
J.
,
2015
, “
Tube Electrode High-Speed Electrochemical Discharge Drilling Using Low-Conductivity Salt Solution
,”
Int. J. Mach. Tools Manuf.
,
92
, pp.
10
18
.10.1016/j.ijmachtools.2015.02.011
14.
Kumar
,
N.
, and
Das
,
A. K.
,
2022
, “
Machining of Micro Features Through μ-ECSM Process and Evaluation of Surface Integrity
,”
CIRP J. Manuf. Sci. Technol.
,
36
, pp.
45
56
.10.1016/j.cirpj.2021.11.001
15.
Rao
,
B. C.
,
2021
, “
Frugal Manufacturing in Smart Factories for Widespread Sustainable Development
,”
R. Soc. Open Sci.
,
8
(
12
), p.
210375
.10.1098/rsos.210375
16.
Rao
,
B. C.
,
2017
, “
Advances in Science and Technology Through Frugality
,”
IEEE Eng. Manage. Rev.
,
45
(
1
), pp.
32
38
.10.1109/EMR.2017.2667219
17.
Singh
,
T.
,
Sharma
,
S.
,
Sidhu
,
S. S.
,
Shlykov
,
E. S.
, and
Ablyaz
,
T. R.
,
2022
, “
Determination of Nanoindentation Behavior of HAZ on Glass Material Machined Via ECSM Process Through Simulation Approach
,”
Materials (Basel)
,
15
(
17
), p.
5870
.10.3390/ma15175870
18.
Sharma
,
S.
, and
Dvivedi
,
A.
,
2023
, “
Simultaneous Electrochemical and Electrodischarge Machining Process: An Approach to Sustainable Manufacturing
,”
J. Manuf. Processes
,
104
, pp.
123
137
.10.1016/j.jmapro.2023.09.009
19.
Ge
,
Y.
,
Zhu
,
Z.
, and
Wang
,
D.
,
2017
, “
Electrochemical Dissolution Behavior of the Nickel-Based Cast Superalloy K423A in NaNO3 Solution
,”
Electrochim. Acta
,
253
, pp.
379
389
.10.1016/j.electacta.2017.09.046
20.
Wang
,
J.
,
Xu
,
Z.
,
Wang
,
J.
, and
Zhu
,
D.
,
2021
, “
Anodic Dissolution Characteristics of Inconel 718 in C6H5K3O7 and NaNO3 Solutions by Pulse Electrochemical Machining
,”
Corros. Sci.
,
183
, p.
109335
.10.1016/j.corsci.2021.109335
21.
Schöpf
,
M.
,
Beltrami
,
I.
,
Boccadoro
,
M.
,
Kramer
,
D.
, and
Schumacher
,
B.
,
2001
, “
ECDM (Electro Chemical Discharge Machining), a New Method for Trueing and Dressing of Metal Bonded Diamond Grinding Tools
,”
CIRP Ann.
,
50
(
1
), pp.
125
128
.10.1016/S0007-8506(07)62086-1
22.
Sharma
,
S.
,
Singh
,
T.
, and
Dvivedi
,
A.
,
2022
, “
A Review on Developments in Electrolytes and Their Feeding Methods for ECDM Process
,”
Silicon
,
15
, pp.
1571
1595
.10.1007/s12633-022-02134-3
23.
Zhan
,
S.
, and
Zhao
,
Y.
,
2020
, “
Plasma-Assisted Electrochemical Machining of Microtools and Microstructures
,”
Int. J. Mach. Tools Manuf.
,
156
, p.
103596
.10.1016/j.ijmachtools.2020.103596
24.
Chen
,
Y.-J.
, and
Sundaram
,
M.
,
2022
, “
A Study on the Sparking Distance in the Electrochemical Discharging Process
,”
J. Manuf. Processes
,
75
, pp.
826
832
.10.1016/j.jmapro.2022.01.048
25.
Liu
,
Y.
,
Fang
,
X.
,
Qu
,
N.
,
Zhang
,
Z.
, and
Lu
,
J.
,
2023
, “
Simultaneous Gas Electrical Discharge and Electrochemical Jet Micromachining of Titanium Alloy in High-Conductivity Salt Solution
,”
J. Mater. Process. Technol.
,
317
, p.
118000
.10.1016/j.jmatprotec.2023.118000
26.
Singh
,
T.
,
Sharma
,
S.
,
Parmar
,
G.
, and
Dvivedi
,
A.
,
2024
, “
On Material Removal Analysis in ECSM Process During Micro-Channelling With Rough Tool: Experimental Investigation and Numerical Simulation
,”
Measurement
,
229
, p.
114440
.10.1016/j.measurement.2024.114440
27.
Bahar
,
D.
,
Dvivedi
,
A.
, and
Kumar
,
P.
,
2024
, “
Improvement in Performance During Micromachining of Borosilicate Glass With Temperature-Stirring-Assisted ECDM
,”
J. Braz. Soc. Mech. Sci. Eng.
,
46
(
5
), p.
312
.10.1007/s40430-024-04891-1
28.
Wuthrich
,
R.
, and
Ziki
,
J. D. A.
,
2015
,
Micromachining Using Electrochemical Discharge Phenomenon
, 2nd ed.,
Elsevier
, Norwich, NY.
29.
Singh
,
T.
, and
Dvivedi
,
A.
,
2018
, “
On Pressurized Feeding Approach for Effective Control on Working Gap in ECDM
,”
Mater. Manuf. Processes
,
33
(
4
), pp.
462
473
.10.1080/10426914.2017.1339319
30.
Wang
,
Y.
, and
Zhang
,
W.
,
2021
, “
Theoretical and Experimental Study on Hybrid Laser and Shaped Tube Electrochemical Machining (Laser-STEM) Process
,”
Int. J. Adv. Manuf. Technol.
,
112
(
5–6
), pp.
1601
1615
.10.1007/s00170-020-06558-2
31.
Bhargav
,
K. V. J.
,
Pyla
,
K. R.
,
Balaji
,
P. S.
, and
Sahu
,
R. K.
,
2023
, “
Micromachining of Al7075 Alloy Using an In-Situ Ultrasonicated μ-ECDM System
,”
Mater. Manuf. Processes
, 38(13), pp.
1
13
.10426914.2023.2187822
32.
Schneider
,
S.
,
Herrig
,
T.
,
Klink
,
A.
, and
Bergs
,
T.
,
2022
, “
Modeling of the Temperature Field Induced During Electrical Discharge Machining
,”
CIRP J. Manuf. Sci. Technol.
,
38
, pp.
650
659
.10.1016/j.cirpj.2022.05.012
33.
Wang
,
D.
,
Zhu
,
Z.
,
Wang
,
N.
,
Zhu
,
D.
, and
Wang
,
H.
,
2015
, “
Investigation of the Electrochemical Dissolution Behavior of Inconel 718 and 304 Stainless Steel at Low Current Density in NaNO3 Solution
,”
Electrochim. Acta
,
156
, pp.
301
307
.10.1016/j.electacta.2014.12.155
34.
Davis
,
R.
,
Singh
,
A.
,
Debnath
,
K.
,
Sabino
,
R. M.
,
Popat
,
K.
,
Soares
,
P.
,
Keshri
,
A. K.
, and
Borgohain
,
B.
,
2022
, “
Enhanced Micro-Electric Discharge Machining-Induced Surface Modification on Biomedical Ti-6Al-4V Alloy
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p.
071002
.10.1115/1.4053110
35.
Zhu
,
D.
,
Yu
,
L.
, and
Zhang
,
R.
,
2018
, “
Dissolution Effects With Different Microstructures of Inconel 718 on Surface Integrity in Electrochemical Machining
,”
J. Electrochem. Soc.
,
165
(
16
), pp.
E872
E878
.10.1149/2.0761816jes
You do not currently have access to this content.