Abstract

The paper presents a numerical and experimental investigation on the stacking of thin, cold rolled nongrain-oriented (CRNO) electrical steel sheets post-tungsten inert gas (TIG) and cold metal transfer (CMT) welding for predicting the effects of TIG and CMT welding current on weld geometry, temperature field, and residual stress distribution in thin, stacked weld sheets. Numerical simulation of a transient nonlinear thermal three-dimensional (3D) element based on actual weld conditions was carried out using ansys software by employing a moving heat source model based on a 3D Gaussian distribution to predict changes in temperature. As a result of the thermal history provided by the model, a mechanical analysis is performed to determine the residual stress distribution and the surface distortion in the element. A significant increase in weld penetration and weld width of the samples was observed with the increase in welding current, as well as a change in the temperature field in the weld zone. Moreover, both the experimental and numerical data are consistent in their estimation of the generation of residual stresses in the weld samples. A numerical model is presented for predicting the thermomechanical behavior of TIG and CMT welded stacked CRNO structures in the stator core of electric motors.

References

1.
Okano
,
S.
,
Tanaka
,
M.
, and
Mochizuki
,
M.
,
2011
, “
Arc Physics Based Heat Source Modelling for Numerical Simulation of Weld Residual Stress and Distortion
,”
Sci. Technol. Weld. Join.
,
16
(
3
), pp.
209
215
.10.1179/1362171810Y.0000000019
2.
Varma Prasad
,
V. M.
,
Joy Varghese
,
V. M.
,
Suresh
,
M. R.
, and
Siva Kumar
,
D.
,
2016
, “
3D Simulation of Residual Stress Developed During TIG Welding of Stainless Steel Pipes
,”
Procedia Technol.
,
24
(
2016
), pp.
364
371
.10.1016/j.protcy.2016.05.049
3.
Schoppa
,
A.
,
Schneider
,
J.
,
Wuppermann
,
C. D.
, and
Bakon
,
T.
,
2003
, “
Influence of Welding and Sticking of Laminations on the Magnetic Properties of Non-Oriented Electrical Steels
,”
J. Magn. Magn. Mater.
,
254–255
, pp.
367
369
.10.1016/S0304-8853(02)00877-6
4.
Honda
,
A.
,
Senda
,
K.
, and
Sadahiro
,
K.
,
2003
, “
Electrical Steel for Motors of Electric and Hybrid Vehicles
,”
Kawasaki Steel Tech. Rep.
,
48
(
3
), pp.
33
38
.https://www.jfesteel.co.jp/archives/en/ksc_giho/no.48/e48-033-038.pdf
5.
Petrovic
,
D. S.
,
2010
, “
Non-Oriented Electrical Steel Sheets
,”
Mater. Technol.
,
44
(
6
), pp.
317
325
.http://mit.imt.si/izvodi/mit106/steiner.pdf
6.
Fischer
,
O.
, and
Schneider
,
J.
,
2003
, “
Influence of Deformation Process on the Improvement of Non-Oriented Electrical Steel
,”
J. Magn. Magn. Mater.
,
254–255
, pp.
302
306
.10.1016/S0304-8853(02)00965-4
7.
Schoppa
,
A.
,
Schneider
,
J.
, and
Wuppermann
,
C. D.
,
2000
, “
Influence of the Manufacturing Process on the Magnetic Properties of Non-Oriented Electrical Steels
,”
J. Magn. Magn. Mater.
,
215–216
, pp.
74
78
.10.1016/S0304-8853(00)00070-6
8.
Dharmik
,
B. Y.
, and
Lautre
,
N. K.
,
2020
, “
Performance Assessment of CMT Over GTA Welding on Stacked Thin Sheets of CRNGO Electrical Steel
,”
Mater. Lett.
,
272
, p.
127901
.10.1016/j.matlet.2020.127901
9.
Vasantharaja
,
P.
,
Maduarimuthu
,
V.
,
Vasudevan
,
M.
, and
Palanichamy
,
P.
,
2012
, “
Assessment of Residual Stresses and Distortion in Stainless Steel Weld Joints
,”
Mater. Manuf. Process.
,
27
(
12
), pp.
1376
1381
.10.1080/10426914.2012.663135
10.
Tseng
,
K. H.
, and
Hsu
,
C. Y.
,
2011
, “
Performance of Activated TIG Process in Austenitic Stainless Steel Welds
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
503
512
.10.1016/j.jmatprotec.2010.11.003
11.
Tseng
,
K. H.
, and
Chou
,
C. P.
,
2002
, “
The Effect of Pulsed GTA Welding on the Residual Stress of a Stainless Steel Weldment
,”
J. Mater. Process. Technol.
,
123
(
3
), pp.
346
353
.10.1016/S0924-0136(02)00004-3
12.
Deng
,
D.
,
Liang
,
W.
, and
Murakawa
,
H.
,
2007
, “
Determination of Welding Deformation in Fillet-Welded Joint by Means of Numerical Simulation and Comparison With Experimental Measurements
,”
J. Mater. Process. Technol.
,
183
(
2–3
), pp.
219
225
.10.1016/j.jmatprotec.2006.10.013
13.
Deng
,
D.
, and
Murakawa
,
H.
,
2006
, “
Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds in Stainless Steel Pipe and Comparison With Experimental Measurements
,”
Comput. Mater. Sci.
,
37
(
3
), pp.
269
277
.10.1016/j.commatsci.2005.07.007
14.
Akbari
,
D.
, and
Sattari-Far
,
I.
,
2009
, “
Effect of the Welding Heat Input on Residual Stresses in Butt-Welds of Dissimilar Pipe Joints
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
769
776
.10.1016/j.ijpvp.2009.07.005
15.
Ouyang
,
G.
,
Chen
,
X.
,
Liang
,
Y.
,
Macziewski
,
C.
, and
Cui
,
J.
,
2019
, “
Review of Fe-6.5 wt % Si High Silicon steel- A Promising Soft Magnetic Material for Sub-kHz Application
,”
J. Magn. Magn. Mater.
,
481
(
1
), pp.
234
250
.10.1016/j.jmmm.2019.02.089
16.
Rossini
,
N. S.
,
Dassisti
,
M.
,
Benyounis
,
K. Y.
, and
Olabi
,
A. G.
,
2012
, “
Methods of Measuring Residual Stresses in Components
,”
Mater. Des.
,
35
(
2012
), pp.
572
588
.10.1016/j.matdes.2011.08.022
17.
Akbari Mousavi
,
S. A. A.
, and
Miresmaeili
,
R.
,
2008
, “
Experimental and Numerical Analyses of Residual Stress Distributions in TIG Welding Process for 304 L Stainless Steel
,”
J. Mater. Process. Technol.
,
208
(
1–3
), pp.
383
394
.10.1016/j.jmatprotec.2008.01.015
18.
Javadi
,
Y.
,
Akhlaghi
,
M.
, and
Najafabadi
,
M. A.
,
2013
, “
Using Finite Element and Ultrasonic Method to Evaluate Welding Longitudinal Residual Stress Through the Thickness in Austenitic Stainless Steel Plates
,”
Mater. Des.
,
45
(
2013
), pp.
628
642
.10.1016/j.matdes.2012.09.038
19.
Ganesh
,
K. C.
,
Vasudevan
,
M.
,
Balasubramanian
,
K. R.
,
Chandrasekhar
,
N.
, and
Vasantharaja
,
P.
,
2014
, “
Thermo-Mechanical Analysis of TIG Welding of AISI 316 LN Stainless Steel Thermo-Mechanical Analysis of TIG Welding of AISI 316 LN Stainless Steel
,”
Mater. Manuf. Process.
,
29
(
8
), pp.
903
909
.10.1080/10426914.2013.872266
20.
Chang
,
P. H.
, and
Teng
,
T. L.
,
2004
, “
Numerical and Experimental Investigations on the Residual Stresses of the Butt-Welded Joints
,”
Comput. Mater. Sci.
,
29
(
4
), pp.
511
522
.10.1016/j.commatsci.2003.12.005
21.
Kong
,
F.
,
Ma
,
J.
, and
Kovacevic
,
R.
,
2011
, “
Numerical and Experimental Study of Thermally Induced Residual Stress in the Hybrid Laser – GMA Welding Process
,”
J. Mater. Process. Technol.
,
211
(
6
), pp.
1102
1111
.10.1016/j.jmatprotec.2011.01.012
22.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.10.1007/BF02667333
23.
Nguyen
,
N. T.
,
Ohta
,
A.
,
Matsuoka
,
K.
,
Suzuki
,
N.
, and
Maeda
,
Y.
,
1999
, “
Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources
,”
Weld. Res. Suppl.
, 78(8), pp.
265
274
.https://ninhnguyen.tripod.com/nguyen.pdf
24.
Gannon
,
L.
,
Liu
,
Y.
,
Pegg
,
N.
, and
Smith
,
M.
,
2010
, “
Effect of Welding Sequence on Residual Stress and Distortion in Flat-Bar Stiffened Plates
,”
Mar. Struct.
,
23
(
3
), pp.
385
404
.10.1016/j.marstruc.2010.05.002
25.
Lee
,
C. H.
, and
Chang
,
K. H.
,
2014
, “
Comparative Study on Girth Weld-Induced Residual Stresses Between Austenitic and Duplex Stainless Steel Pipe Welds
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
140
150
.10.1016/j.applthermaleng.2013.11.001
26.
Long
,
H.
,
Gery
,
D.
,
Carlier
,
A.
, and
Maropoulos
,
P. G.
,
2009
, “
Prediction of Welding Distortion in Butt Joint of Thin Plates
,”
Mater. Des.
,
30
(
10
), pp.
4126
4135
.10.1016/j.matdes.2009.05.004
27.
Deng
,
D.
,
Luo
,
Y.
,
Serizawa
,
H.
,
Shibahara
,
M.
, and
Murakawa
,
H.
,
2003
, “
Numerical Simulation of Residual Stress and Deformation Considering Phase Transformation Effect
,”
Trans. JWRI
,
32
(
2
), pp.
325
333
.https://ir.library.osakau.ac.jp/repo/ouka/all/12750/jwri32_02_325.pdf
28.
Cho
,
S. H.
, and
Kim
,
J. W.
,
2002
, “
Analysis of Residual Stress in Carbon Steel Weldment Incorporating Phase Transformations
,”
Sci. Technol. Weld. Join.
,
7
(
4
), pp.
212
216
.10.1179/136217102225004257
29.
Wu
,
C. S.
,
Zhang
,
H. T.
, and
Chen
,
J.
,
2017
, “
Numerical Simulation of Keyhole Behaviors and Fluid Dynamics in Laser – Gas Metal Arc Hybrid Welding of Ferrite Stainless Steel Plates
,”
J. Manuf. Process.
,
25
(
2017
), pp.
235
245
.10.1016/j.jmapro.2016.11.009
30.
Catalog Issue-09/
Power Core
,
2012
, ThyssenKrupp India Manual on Electrical Steel, ThyssenKrupp Electrical Steel India Private Limited, Nashik, Maharashtra, India.
31.
Anderoglu
,
O.
,
2004
, Technical Note on Residual Stress Measurement Using x-Ray Diffraction Residual Stress Measurement Using x-Ray Diffraction, Texas A&M University, College Station, TX.
32.
Vourna
,
P.
,
Ktena
,
A.
,
Tsakiridis
,
P. E.
, and
Hristoforou
,
E.
,
2015
, “
A Novel Approach of Accurately Evaluating Residual Stress and Microstructure of Welded Electrical Steels
,”
NDTE Int.
,
71
, pp.
33
42
.10.1016/j.ndteint.2014.09.011
33.
Hristoforou
,
E.
,
Vourna
,
P.
,
Ktena
,
A.
, and
Svec
,
P.
,
2016
, “
On the Universality of the Dependence of Magnetic Parameters on Residual Stresses in Steels
,”
IEEE Trans. Magn.
,
52
(
5
), pp.
1
6
.10.1109/TMAG.2015.2509642
34.
National Physical Laboratory Manual on Measurement and Guide, 2005,
Determination of Residual Stresses by X-Ray Diffraction, 52(2), National Physical Laboratory, Teddington, UK, pp. 1–77.
35.
Reda
,
R.
,
Magdy
,
M.
, and
Rady
,
M.
,
2020
, “
Ti – 6Al – 4V TIG Weld Analysis Using FEM Simulation and Experimental Characterization
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
,
44
(
3
), pp.
765
782
.10.1007/s40997-019-00287-y
36.
Singh
,
S.
,
Yadaiah
,
N.
,
Bag
,
S.
, and
Pal
,
S.
,
2014
, “
Numerical Simulation of Welding-Induced Residual Stress in Fusion Welding Process Using Adaptive Volumetric Heat Source
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
, 228(16), pp. 2960–2972.10.1177/0954406214525601
37.
Kong
,
F.
, and
Kovacevic
,
R.
,
2010
, “
3D Finite Element Modeling of the Thermally Induced Residual Stress in the Hybrid Laser/Arc Welding of Lap Joint
,”
J. Mater. Process. Technol.
,
210
(
6–7
), pp.
941
950
.10.1016/j.jmatprotec.2010.02.006
You do not currently have access to this content.