Abstract

Temporomandibular joint replacement (TMJR) is a surgical procedure that relies heavily on the biomechanical properties of the implant-bone interface for success. In this study, we investigated the effects of three commonly used implant screw thread designs (buttress, square, and triangle) on the biomechanical performance of the mandibular bone-implant construct, with the aim of improving osseointegration. Using finite element analysis, we simulated the mechanical behavior of the prosthesis and mandible and examined the biomechanics of the temporomandibular joint. We considered five coefficients of friction ranging from 0.1 to 0.5 in our analyses. Our hypothesis was that changing the screw thread shape while keeping the pitch, height, and depth constant could enhance the biomechanical environment at the peri-implant bone. Our results indicate that the square thread design produced the highest stress concentration, while the triangle thread design exhibited the most favorable distribution of stress around the implant. Furthermore, increasing the coefficient of friction led to an increase in stress concentration in the implant and surrounding bone. Our findings offer valuable insights into the biomechanical performance of different screw thread designs in the mandibular bone-implant construct. They highlight the significance of considering screw thread shape and coefficient of friction in TMJR implant design. Future studies should incorporate the viscoelastic properties of bone to improve the accuracy of finite element analysis. This research contributes to the optimization of TMJR implants and ultimately enhances patient outcomes.

References

1.
Dimitroulis
,
G.
,
2018
, “
Management of Temporomandibular Joint Disorders: A Surgeon's Perspective
,”
Aust. Dent. J.
,
63
, pp.
S79
S90
.10.1111/adj.12593
2.
Banerjee
,
A.
,
Roy Chowdhury
,
A.
, and
Majumder
,
S.
,
2022
, “
Temporomandibular Joint Disorder and Biomechanical Simulation of the Replacement: A Literature Review on Various Surgical and Nonsurgical Methods, and Development of the Finite Element Method Approach in the Treatment
,”
J. Med. Diagn.
,
5
(
2
), p.
021005
.10.1115/1.4054095
3.
Chowdhury
,
A. R.
,
Kashi
,
A.
, and
Saha
,
S.
,
2011
, “
A Comparison of Stress Distributions for Different Surgical Procedures, Screw Dimensions and Orientations for a Temporomandibular Joint Implant
,”
J. Biomech.
,
44
(
14
), pp.
2584
2587
.10.1016/j.jbiomech.2011.06.002
4.
Biswas
,
J. K.
,
Roy
,
S.
,
Pradhan
,
R.
,
Rana
,
M.
, and
Majumdar
,
S.
,
2019
, “
Effects of Cervical Disc Replacement and Anterior Fusion for Different Bone Conditions: A Finite Element Study
,”
Int. J. Multiscale Comput. Eng.
,
17
(
4
), pp.
411
427
.10.1615/IntJMultCompEng.2019030212
5.
Dhason
,
R.
,
Roy
,
S.
, and
Datta
,
S.
,
2022
, “
Metal and Composite Bone Plates for B1 Periprosthetic Femoral Fracture in Healthy and Osteoporotic Condition: A Comparative Biomechanical Study
,”
Int. J. Artif. Organs
,
45
(
8
), pp.
704
714
.10.1177/03913988221108752
6.
Kashi
,
A.
,
Chowdhury
,
A. R.
, and
Saha
,
S.
,
2010
, “
Finite Element Analysis of a TMJ Implant
,”
J. Dent. Res.
,
89
(
3
), pp.
241
245
.10.1177/0022034509357716
7.
Tanaka
,
E.
,
Tanne
,
K.
, and
Sakuda
,
M.
,
1994
, “
A Three-Dimensional Finite Element Model of the Mandible Including the TMJ and Its Application to Stress Analysis in the TMJ During Clenching
,”
Med. Eng. Phys.
,
16
(
4
), pp.
316
322
.10.1016/1350-4533(94)90058-2
8.
Tanaka
,
E.
,
Rodrigo
,
D. P.
,
Tanaka
,
M.
,
Kawaguchi
,
A.
,
Shibazaki
,
T.
, and
Tanne
,
K.
,
2001
, “
Stress Analysis in the TMJ During Jaw Opening by Use of a Three-Dimensional Finite Element Model Based on Magnetic Resonance Images
,”
Int. J. Oral Maxillofac. Surg.
,
30
(
5
), pp.
421
430
.10.1054/ijom.2001.0132
9.
Rodrigues
,
Y. L.
,
Mathew
,
M. T.
,
Mercuri
,
L. G.
,
Da SIlva
,
J. S. P.
,
Henriques
,
B.
, and
Souza
,
J. C. M.
,
2018
, “
Biomechanical Simulation of Temporomandibular Joint Replacement (TMJR) Devices: A Scoping Review of the Finite Element Method
,”
Int. J. Oral Maxillofac. Surg.
,
47
(
8
), pp.
1032
1042
.10.1016/j.ijom.2018.02.005
10.
Alaneme
,
K. K.
,
Kareem
,
S. A.
,
Ozah
,
B. N.
,
Alshahrani
,
H. A.
, and
Ajibuwa
,
O. A.
,
2022
, “
Application of Finite Element Analysis for Optimizing Selection and Design of Ti-Based Biometallic Alloys for Fractures and Tissues Rehabilitation: A Review
,”
J. Mater. Res. Technol.
,
19
, pp.
121
139
.10.1016/j.jmrt.2022.05.001
11.
Chakraborty
,
A.
,
Datta
,
P.
,
Majumder
,
S.
,
Mondal
,
S. C.
, and
Roychowdhury
,
A.
,
2020
, “
Finite Element and Experimental Analysis to Select Patient's Bone Condition Specific Porous Dental Implant, Fabricated Using Additive Manufacturing
,”
Comput. Biol. Med.
,
124
, p.
103839
.10.1016/j.compbiomed.2020.103839
12.
Baggi
,
L.
,
Cappelloni
,
I.
,
Maceri
,
F.
, and
Vairo
,
G.
,
2008
, “
Stress-Based Performance Evaluation of Osseointegrated Dental Implants by Finite-Element Simulation
,”
Simul. Model. Pract. Theory
,
16
(
8
), pp.
971
987
.10.1016/j.simpat.2008.05.009
13.
Schrotenboer
,
J.
,
Tsao
,
Y. P.
,
Kinariwala
,
V.
, and
Wang
,
H. L.
,
2008
, “
Effect of Microthreads and Platform Switching on Crestal Bone Stress Levels: A Finite Element Analysis
,”
J. Periodontol.
,
79
(
11
), pp.
2166
2172
.10.1902/jop.2008.080178
14.
Chakraborty
,
A.
,
Sahare
,
K. D.
,
Datta
,
P.
,
Majumder
,
S.
,
Roychowdhury
,
A.
, and
Basu
,
B.
,
2023
, “
Probing the Influence of Hybrid Thread Design on Biomechanical Response of Dental Implants: Finite Element Study and Experimental Validation
,”
ASME J. Biomech. Eng.
,
145
(
1
), p.
011011
.10.1115/1.4054984
15.
Stegaroiu
,
R.
,
Sato
,
T.
,
Kusakari
,
H.
, and
Miyakawa
,
O.
,
1998
, “
Influence of Restoration Type on Stress Distribution in Bone Around Implants: A Three-Dimensional Finite Element Analysis
,”
Int. J. Oral Maxillofac. Implants
,
13
(
1
), pp.
82
90
.https://pubmed.ncbi.nlm.nih.gov/9509784/
16.
Banerjee
,
A.
,
Rana
,
M.
,
Chakraborty
,
A.
,
Singh
,
A. P.
, and
Roy Chowdhury
,
A.
,
2022
, “
Influence of Implant Parameters on Biomechanical Stability of TMJ Replacement: A Finite Element Analysis
,”
Int. J. Artif. Organs
,
45
(
8
), pp.
715
721
.10.1177/03913988221107944
17.
Sarkar
,
S.
,
Sahu
,
T. P.
,
Datta
,
A.
,
Chandra
,
N.
,
Chakraborty
,
A.
,
Datta
,
P.
,
Majumder
,
S.
, and
Chowdhury
,
A. R.
,
2019
, “
Mechanical Response at Peri-Implant Mandibular Bone for Variation of Pore Characteristics of Implants: A Finite Element Study
,”
Acta Bioeng. Biomech.
,
21
(
2
), pp.
83
93
.10.5277/ABB-01294-2019-02
18.
Bulaqi
,
H. A.
,
Mashhadi
,
M. M.
,
Safari
,
H.
,
Samandari
,
M. M.
, and
Geramipanah
,
F.
,
2015
, “
Effect of Increased Crown Height on Stress Distribution in Short Dental Implant Components and Their Surrounding Bone: A Finite Element Analysis
,”
J. Prosthetic Dent.
,
113
(
6
), pp.
548
557
.10.1016/j.prosdent.2014.11.007
19.
?Gupta
,
Y.
,
Iyer
,
R.
,
Dommeti
,
V. K.
,
Nutu
,
E.
,
Rana
,
M.
,
Merdji
,
A.
,
Biswas
,
J. K.
, and
Roy
,
S.
, “Design of Dental Implant Using Design of Experiment and Topology Optimization: A Finite Element Analysis Study,”
Proc. Inst. Mech. Eng. H.
, 235(2), pp. 157–166.10.1177/0954411920967146
20.
Choudhury
,
S.
,
Rana
,
M.
,
Chakraborty
,
A.
,
Majumder
,
S.
,
Roy
,
S.
,
RoyChowdhury
,
A.
, and
Datta
,
S.
,
2022
, “
Design of Patient Specific Basal Dental Implant Using Finite Element Method and Artificial Neural Network Technique
,”
Proc. Inst. Mech. Eng., Part H.
,
236
(
9
), pp.
1375
1387
.10.1177/09544119221114729
21.
Altamemi
,
Z. A.
,
2022
, “
Digital Computed Tomography in Dental Sciences Diagnosis and Investigations: A Review
,”
Eurasian Med. Res. Periodical
,
13
, pp.
70
83
.https://geniusjournals.org/index.php/emrp/article/view/2350
22.
Feng
,
X.
,
Luo
,
Z.
,
Li
,
Y.
,
Yao
,
Y.
,
Qi
,
W.
,
Chen
,
B.
, and
Liang
,
H.
,
2022
, “
Fixation Stability Comparison of Bone Screws Based on Thread Design: Buttress Thread, Triangle Thread, and Square Thread
,”
BMC Musculoskeletal Disord.
,
23
(
1
), pp.
1
10
.10.1186/s12891-022-05751-6
23.
Alemayehu
,
D. B.
, and
Jeng
,
Y. R.
,
2021
, “
Three-Dimensional Finite Element Investigation Into Effects of Implant Thread Design and Loading Rate on Stress Distribution in Dental Implants and Anisotropic Bone
,”
Materials
,
14
(
22
), p.
6974
.10.3390/ma14226974
24.
Sugiura
,
T.
,
Yamamoto
,
K.
,
Horita
,
S.
,
Murakami
,
K.
,
Tsutsumi
,
S.
, and
Kirita
,
T.
,
2016
, “
The Effects of Bone Density and Crestal Cortical Bone Thickness on Micromotion and Peri-Implant Bone Strain Distribution in an Immediately Loaded Implant: A Nonlinear Finite Element Analysis
,”
J. Periodontal Implant Sci.
,
46
(
3
), pp.
152
65
.10.5051/jpis.2016.46.3.152
25.
Jensen
,
T. B.
,
Bechtold
,
J. E.
,
Chen
,
X.
, and
Søballe
,
K.
,
2007
, “
Systemic Alendronate Treatment Improves Fixation of Press‐Fit Implants: A Canine Study Using Nonloaded Implants
,”
J. Orthop. Res.
,
25
(
6
), pp.
772
778
.10.1002/jor.20272
26.
Appelman-Dijkstra
,
N. M.
, and
Papapoulos
,
S. E.
,
2015
, “
Modulating Bone Resorption and Bone Formation in Opposite Directions in the Treatment of Postmenopausal Osteoporosis
,”
Drugs
,
75
(
10
), pp.
1049
1058
.10.1007/s40265-015-0417-7
27.
Nader
,
E.
,
Skinner
,
S.
,
Romana
,
M.
,
Fort
,
R.
,
Lemonne
,
N.
,
Guillot
,
N.
,
Gauthier
,
A.
,
Antoine-Jonville
,
S.
,
Renoux
,
C.
,
Hardy-Dessources
,
M.-D.
,
Stauffer
,
E.
,
Joly
,
P.
,
Bertrand
,
Y.
, and
Connes
,
P.
,
2019
, “
Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise
,”
Front. Physiol.
,
10
, p.
1329
.10.3389/fphys.2019.01329
28.
Yu
,
J.
,
Zhang
,
C.
,
Chen
,
W. M.
,
Zhao
,
D.
,
Chu
,
P.
,
Wang
,
S.
,
Huang
,
J.
,
Wang
,
X.
, and
Ma
,
X.
,
2020
, “
Finite-Element Analysis of the Influence of Tibial Implant Fixation Design of Total Ankle Replacement on Bone–Implant Interfacial Biomechanical Performance
,”
J. Orthop. Surg.
,
28
(
3
), p.
230949902096612
.10.1177/2309499020966125
29.
Černe
,
B.
,
Bergant
,
Z.
,
Šturm
,
R.
,
Tavčar
,
J.
, and
Zorko
,
D.
,
2022
, “
Experimental and Numerical Analysis of Laminated Carbon Fibre-Reinforced Polymer Gears With Implicit Model for Coefficient-of-Friction Evaluation
,”
J. Comput. Des. Eng.
,
9
(
1
), pp.
246
262
.10.1093/jcde/qwab083
30.
Ballester
,
M. Á.
,
Zisserman
,
A. P.
, and
Brady
,
M.
,
2022
, “
Estimation of the Partial Volume Effect in MRI
,”
Med. Image Anal.
,
6
(
4
), pp.
389
405
.10.1016/s1361-8415(02)00061-0
31.
Roy
,
S.
,
Panda
,
D.
,
Khutia
,
N.
, and
Chowdhury
,
A. R.
,
2014
, “
Pore Geometry Optimization of Titanium (Ti6Al4V) Alloy, for Its Application in the Fabrication of Customized Hip Implants
,”
Int. J. Biomater.
,
2014
, pp.
1
12
.10.1155/2014/313975
32.
McCullough
,
J. J.
, and
Klokkevold
,
P. R.
,
2017
, “
The Effect of Implant Macro‐Thread Design on Implant Stability in the Early Post‐Operative Period: A Randomized, Controlled Pilot Study
,”
Clinical Oral Implants Res.
,
28
(
10
), pp.
1218
1226
.10.1111/clr.12945
33.
Joshi
,
S.
,
Dhatrak
,
P.
,
Nimbalkar
,
S.
, and
Gherde
,
C.
,
2021
, “
An Effect of Various Parameters on Insertion Torque to Improve the Success Rate of Dental Implantation: A Review
,”
Mater. Today: Proc.
,
43
, pp.
928
934
.10.1016/j.matpr.2020.07.222
34.
Desai
,
S. R.
,
Desai
,
M. S.
,
Katti
,
G.
, and
Karthikeyan
,
I.
,
2012
, “
Evaluation of Design Parameters of Eight Dental Implant Designs: A Two–Dimensional Finite Element Analysis
,”
Nigerian J. Clin. Pract.
,
15
(
2
), pp.
176
81
.10.4103/1119-3077.97308
35.
Feng
,
X.
,
Qi
,
W.
,
Zhang
,
T.
,
Fang
,
C.
,
Liang
,
H.
,
Chen
,
B.
, and
Leung
,
F.
,
2021
, “
Lateral Migration Resistance of Screw is Essential in Evaluating Bone Screw Stability of Plate Fixation
,”
Sci. Rep.
,
11
(
1
), pp.
1
10
.10.1038/s41598-021-91952-3
36.
Khened
,
V.
,
Bhandarkar
,
S.
, and
Dhatrak
,
P.
,
2022
, “
Dental Implant Thread Profile Optimization Using Taguchi Approach
,”
Mater. Today: Proc.
,
62
, pp.
3344
3349
.10.1016/j.matpr.2022.04.245
You do not currently have access to this content.