Abstract

Conventional robot designs have been applied as feedback stages in brain-computer interfaces (BCI) for stroke upper limb neurorehabilitation, showing promising results. Soft -robotic devices can be simpler and less expensive to manufacture, and provide ergonomic advantages over traditional designs, allowing to increase the efficacy and availableness of BCI systems for stroke neurorehabilitation. However, patients' degrees of control, neurophysiological activity, and system's usability with a BCI, using a soft robotic device as feedback, have not been assessed in stroke. For these reasons, a BCI system with a soft robotic feedback device was assessed in stroke patients. Fifty trials were acquired to setup the system, and another fifty trials were performed for evaluating patients' BCI control and cortical activity during movement intention (MI) and robotic feedback. User experience with the BCI was also assessed. Classification accuracy was in the range of 71.3% to 97.5%. Significant decrease in alpha power was observed during both motor intention and robotic feedback, but significant decrease in beta power was only observed during motor intention. BCI performance was high and in the range of reported BCI stroke interventions that used traditional robotics as feedback. Power decrease observed predominantly in alpha during soft robotic feedback was likely due to the eliciting of motor-related mechanisms. Quantification of user experience with the BCI implied that the system complexity is adequate for stroke patients. Therefore, a BCI system aimed at stroke neurorehabilitation can incorporate a soft robotic design as feedback and has potential for upper extremity interventions.

References

1.
Tsao
,
C. W.
,
Aday
,
A. W.
,
Almarzooq
,
Z. I.
,
Alonso
,
A.
,
Beaton
,
A. Z.
,
Bittencourt
,
M. S.
,
Boehme
,
A. K.
, et al.,
2022
, “
Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association
,”
Circulation
,
145
(
8
), pp.
e153
e639
.10.1161/CIR.0000000000001052
2.
Kwakkel
,
G.
,
Kollen
,
B. J.
,
van der Grond
,
J.
, and
Prevo
,
A. J. H.
,
2003
, “
Probability of Regaining Dexterity in the Flaccid Upper Limb
,”
Stroke
,
34
(
9
), pp.
2181
2186
.10.1161/01.STR.0000087172.16305.CD
3.
Farmer
,
S.
,
Durairaj
,
V.
,
Swain
,
I.
, and
Pandyan
,
I.
,
2014
, “
Assistive Technologies: Can They Contribute to Rehabilitation of Upper Limb After Stroke?
,”
Phys. Med. Rehabil.
,
95
(
5
), pp.
968
985
.10.1016/j.apmr.2013.12.020
4.
Cervera
,
M. A.
,
Soekadar
,
S. R.
,
Ushiba
,
J.
,
Millán
,
J. D. R.
,
Liu
,
M.
,
Birbaumer
,
N.
, and
Garipelli
,
G.
,
2018
, “
Brain-Computer Interfaces for Post-Stroke Motor Rehabilitation: A Meta-Analysis
,”
Ann. Clin. Transl. Neurol.
,
5
(
5
), pp.
651
663
.10.1002/acn3.544
5.
Alon
,
G.
,
Levitt
,
A. F.
, and
McCarthy
,
P. A.
,
2007
, “
Functional Electrical Stimulation Enhancement of Upper Extremity Functional Recovery During Stroke Rehabilitation: A Pilot Study
,”
Neurorehabil. Neural Repair
,
21
(
3
), pp.
207
215
.10.1177/1545968306297871
6.
López-Larraz
,
E.
,
Sarasola-Sanz
,
A.
,
Irastorza-Landa
,
N.
,
Birbaumer
,
N.
, and
Ramos-Murguialday
,
A.
,
2018
, “
Brain-Machine Interfaces for Rehabilitation in Stroke: A Review
,”
NeuroRehabilitation
,
43
(
1
), pp.
77
97
.10.3233/NRE-172394
7.
Masiero
,
S.
,
Poli
,
P.
,
Rosati
,
G.
,
Zanotto
,
D.
,
Iosa
,
M.
,
Paolucci
,
S.
, and
Morone
,
G.
,
2014
, “
The Value of Robotic Systems in Stroke Rehabilitation
,”
Expert Rev. Med. Devices
,
11
(
2
), pp.
187
198
.10.1586/17434440.2014.882766
8.
Colomer
,
C.
,
Baldoví
,
A.
,
Torromé
,
S.
,
Navarro
,
M. D.
,
Moliner
,
B.
,
Ferri
,
J.
, and
Noé
,
E.
,
2013
, “
Efficacy of Armeo®Spring During the Chronic Phase of Stroke. Study in Mild to Moderate Cases of Hemiparesis
,”
Neurología (English Ed.)
,
28
(
5
), pp.
261
267
.10.1016/j.nrleng.2012.04.017
9.
Torrisi
,
M.
,
Maggio
,
M. G.
,
de Cola
,
M. C.
,
Zichittella
,
C.
,
Carmela
,
C.
,
Porcari
,
B.
,
la Rosa
,
G.
,
de Luca
,
R.
,
Naro
,
A.
, and
Calabrò
,
R. S.
,
2021
, “
Beyond Motor Recovery After Stroke: The Role of Hand Robotic Rehabilitation Plus Virtual Reality in Improving Cognitive Function
,”
J. Clin. Neurosci.
,
92
, pp.
11
16
.10.1016/j.jocn.2021.07.053
10.
Weber
,
L. M.
, and
Stein
,
J.
,
2018
, “
The Use of Robots in Stroke Rehabilitation: A Narrative Review
,”
NeuroRehabilitation
,
43
(
1
), pp.
99
110
.10.3233/NRE-172408
11.
Chu
,
C. Y.
, and
Patterson
,
R. M.
,
2018
, “
Soft Robotic Devices for Hand Rehabilitation and Assistance: A Narrative Review
,”
J. Neuroeng. Rehabil.
,
15
(
1
), pp.
1
14
.10.1186/s12984-018-0350-6
12.
Laschi
,
C.
, and
Cianchetti
,
M.
,
2014
, “
Soft Robotics: New Perspectives for Robot Bodyware and Control
,”
Front. Bioeng. Biotechnol.
,
2
(
January
), pp.
1
5
.10.3389/fbioe.2014.00003
13.
Shi
,
X. Q.
,
Heung
,
H. L.
,
Tang
,
Z. Q.
,
Li
,
Z.
, and
Tong
,
K. Y.
,
2021
, “
Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors
,”
J. Stroke Cerebrovasc. Dis.
,
30
(
7
), p.
105812
.10.1016/j.jstrokecerebrovasdis.2021.105812
14.
Mane
,
R.
,
Chouhan
,
T.
, and
Guan
,
C.
,
2020
, “
BCI for Stroke Rehabilitation: Motor and Beyond
,”
J. Neural Eng.
,
17
(
4
), p.
041001
.10.1088/1741-2552/aba162
15.
Lee
,
C.
,
Kim
,
M.
,
Kim
,
Y. J.
,
Hong
,
N.
,
Ryu
,
S.
,
Kim
,
H. J.
, and
Kim
,
S.
,
2017
, “
Soft Robot Review
,”
Int. J. Control Autom. Syst.
,
15
(
1
), pp.
3
15
.10.1007/s12555-016-0462-3
16.
Cantillo-Negrete
,
J.
,
Carino-Escobar
,
R. I.
,
Carrillo-Mora
,
P.
,
Elias-Vinas
,
D.
, and
Gutierrez-Martinez
,
J.
,
2018
, “
Motor Imagery-Based Brain-Computer Interface Coupled to a Robotic Hand Orthosis Aimed for Neurorehabilitation of Stroke Patients
,”
J. Healthcare Eng.
, pp.
1
10
.10.1155/2018/1624637
17.
Cantillo-Negrete
,
J.
,
Carino-Escobar
,
R. I.
,
Carrillo-Mora
,
P.
,
Rodriguez-Barragan
,
M. A.
,
Hernandez-Arenas
,
C.
,
Quinzaños-Fresnedo
,
J.
,
Hernandez-Sanchez
,
I. R.
,
Galicia-Alvarado
,
M. A.
,
Miguel-Puga
,
A.
, and
Arias-Carrion
,
O.
,
2021
, “
Brain-Computer Interface Coupled to a Robotic Hand Orthosis for Stroke Patients' Neurorehabilitation: A Crossover Feasibility Study
,”
Front. Hum. Neurosci.
,
15
(
June
), pp.
1
15
.10.3389/fnhum.2021.656975
18.
Carino-Escobar
,
R. I.
,
Rodríguez-García
,
M. E.
,
Ramirez-Nava
,
A. G.
,
Quinzaños-Fresnedo
,
J.
,
Ortega-Robles
,
E.
,
Arias-Carrion
,
O.
,
Valdés-Cristerna
,
R.
, and
Cantillo-Negrete
,
J.
,
2022
, “
A Case Report: Upper Limb Recovery From Stroke Related to SARS-CoV-2 Infection During an Intervention With a Brain-Computer Interface
,”
Front. Neurol.
,
13
, p.
1010328
.10.3389/fneur.2022.1010328
19.
Billingham
,
S. A. M.
,
Whitehead
,
A. L.
, and
Julious
,
S. A.
,
2013
, “
An Audit of Sample Sizes for Pilot and Feasibility Trials Being Undertaken in the United Kingdom Registered in the United Kingdom Clinical Research Network Database
,”
BMC Med. Res. Methodol.
,
13
(
1
), p.
104
.10.1186/1471-2288-13-104
20.
FDA
,
2011
, “Investigational Device Exemptions (IDEs) for Early Feasibility Medical Device Clinical Studies, Including Certain First in Human (FIH) Studies,” Food and Drug Administration, Rockville, MD, Report No.
FDA-2011-D-0787
.https://www.fda.gov/regulatory-information/searchfda-guidance-documents/investigational-device-exemptions-ides-early-feasibility-medicaldevice-clinical-studies-including
21.
Ostrosky
,
F.
,
Gomez
,
E.
,
Matute
,
E.
,
Rosseli
,
M.
,
Ardilla
,
A.
, and
Pineda
,
D.
,
2019
, Neuropsi Atención y Memoria Manual Moderno, Publingenio, México, D. F.
22.
Blankertz
,
B.
,
Tomioka
,
R.
,
Lemm
,
S.
,
Kawanabe
,
M.
, and
Müller
,
K.-R.
,
2008
, “
Optimizing Spatial Filters for Robust EEG Single-Trial Analysis
,”
IEEE Signal Process. Mag.
,
25
(
1
), pp.
41
56
.10.1109/MSP.2008.4408441
23.
Ang
,
K. K.
,
Chin
,
Z. Y.
,
Wang
,
C.
,
Guan
,
C.
, and
Zhang
,
H.
,
2012
, “
Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b
,”
Front. Neurosci.
,
6
, p.
39
.10.3389/fnins.2012.00039
24.
Shi
,
Y.
, and
Eberhart
,
R.
,
1998
, “
A Modified Particle Swarm Optimizer
,” 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (
Cat. No.98TH8360
), Anchorage, AK, May 4–9, pp.
69
73
.10.1109/ICEC.1998.699146
25.
Biggar
,
S.
, and
Yao
,
W.
,
2016
, “
Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
10
), pp.
1071
1080
.10.1109/TNSRE.2016.2521544
26.
Bertrand
,
O.
,
Perrin
,
F.
, and
P
,
J.
,
1985
, “
A Theoretical Justification of the Average Reference in Topographic Evoked Potential Studies
,”
Electroencephalogr. Clin. Neurophysiol.
,
62
(
6
), pp.
462
464
.10.1016/0168-5597(85)90058-9
27.
Tallon-Baudry
,
C.
,
Bertrand
,
O.
,
Delpuech
,
C.
, and
Pernier
,
J.
,
1997
, “
Oscillatory Gamma-Band (30-70 Hz) Activity Induced by a Visual Search Task in Humans
,”
J. Neurosci.
,
17
(
2
), pp.
722
734
.10.1523/JNEUROSCI.17-02-00722.1997
28.
Pfurtscheller
,
G.
, and
Lopes Da Silva
,
F. H.
,
1999
, “
Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles
,”
Clin. Neurophysiol.
,
110
(
11
), pp.
1842
1857
.10.1016/S1388-2457(99)00141-8
29.
Bangor
,
A.
,
Kortum
,
P.
, and
Miller
,
J.
,
2009
, “
Determining What Individual SUS Scores Mean; Adding an Adjective Rating
,”
J. Usability Stud.
,
4
(
3
), pp.
114
123
.https://uxpajournal.org/determining-what-individualsus-scores-mean-adding-an-adjective-rating-scale/
30.
Graimann
,
B.
,
Huggins
,
J. E.
,
Levine
,
S. P.
, and
Pfurtscheller
,
G.
,
2002
, “
Visualization of Significant ERD/ERS Patterns in Multichannel EEG and ECoG Data
,”
Clin. Neurophysiol.
,
113
(
1
), pp.
43
47
.10.1016/S1388-2457(01)00697-6
31.
Frolov
,
A. A.
,
Mokienko
,
O.
,
Lyukmanov
,
R.
,
Biryukova
,
E.
,
Kotov
,
S.
,
Turbina
,
L.
,
Nadareyshvily
,
G.
, and
Bushkova
,
Y.
,
2017
, “
Post-Stroke Rehabilitation Training With a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial
,”
Front. Neurosci.
,
11
, p.
400
.10.3389/fnins.2017.00400
32.
Ang
,
K. K.
,
Guan
,
C.
,
Chua
,
K. S. G.
,
Ang
,
B. T.
,
Kuah
,
C. W. K.
,
Wang
,
C.
,
Phua
,
K. S.
,
Chin
,
Z. Y.
, and
Zhang
,
H.
,
2011
, “
A Large Clinical Study on the Ability of Stroke Patients to Use an EEG-Based Motor Imagery Brain-Computer Interface
,”
Clin. EEG Neurosci.
,
42
(
4
), pp.
253
258
.10.1177/155005941104200411
33.
Simon
,
C.
,
Bolton
,
D. A. E.
,
Kennedy
,
N. C.
,
Soekadar
,
S. R.
, and
Ruddy
,
K. L.
,
2021
, “
Challenges and Opportunities for the Future of Brain-Computer Interface in Neurorehabilitation
,”
Front. Neurosci.
,
15
, p.
699428
.10.3389/fnins.2021.699428
34.
Llanos
,
C.
,
Rodriguez
,
M.
,
Rodriguez-Sabate
,
C.
,
Morales
,
I.
, and
Sabate
,
M.
,
2013
, “
Mu-Rhythm Changes During the Planning of Motor and Motor Imagery Actions
,”
Neuropsychologia
,
51
(
6
), pp.
1019
1026
.10.1016/j.neuropsychologia.2013.02.008
35.
Aleksandrov
,
A. A.
, and
Tugin
,
S. M.
,
2012
, “
Changes in the Mu Rhythm in Different Types of Motor Activity and on Observation of Movements
,”
Neurosci. Behav. Physiol.
,
42
(
3
), pp.
302
307
.10.1007/s11055-012-9566-2
36.
Athanasiou
,
A.
,
Klados
,
M. A.
,
Styliadis
,
C.
,
Foroglou
,
N.
,
Polyzoidis
,
K.
, and
Bamidis
,
P. D.
,
2018
, “
Investigating the Role of Alpha and Beta Rhythms in Functional Motor Networks
,”
Neuroscience
,
378
, pp.
54
70
.10.1016/j.neuroscience.2016.05.044
37.
Chen
,
S.
,
Cao
,
L.
,
Shu
,
X.
,
Wang
,
H.
,
Ding
,
L.
,
Wang
,
S.-H.
, and
Jia
,
J.
,
2020
, “
Longitudinal Electroencephalography Analysis in Subacute Stroke Patients During Intervention of Brain–Computer Interface With Exoskeleton Feedback
,”
Front. Neurosci.
,
14
, p.
809
.10.3389/fnins.2020.00809
38.
Carino-Escobar
,
R. I.
,
Carrillo-Mora
,
P.
,
Valdés-Cristerna
,
R.
,
Rodriguez-Barragan
,
M. A.
,
Hernandez-Arenas
,
C.
,
Quinzaños-Fresnedo
,
J.
,
Galicia-Alvarado
,
M. A.
, and
Cantillo-Negrete
,
J.
,
2019
, “
Longitudinal Analysis of Stroke Patients' Brain Rhythms During an Intervention With a Brain-Computer Interface
,”
Neural Plast.
,
2019
, pp.
1
11
.10.1155/2019/7084618
39.
Shahraki
,
Z. A.
, and
Nafchi
,
M. A.
,
2023
, “
The Impact of Brain–Computer Interface on Lifestyle of Elderly People
,”
Brain‐Computer Interface: Using Deep Learning Applications
,
M.
Sumithra
,
R.
Dhanaraj
,
M.
Milanova
,
B.
Balusamy
, and
C.
Venkatesan
, eds.,
Wiley
,
Hoboken
, NJ, pp.
77
100
.
40.
Yap
,
H. K.
,
Khin
,
P. M.
,
Koh
,
T. H.
,
Sun
,
Y.
,
Liang
,
X.
,
Lim
,
J. H.
, and
Yeow
,
C.-H.
,
2017
, “
A Fully Fabric-Based Bidirectional Soft Robotic Glove for Assistance and Rehabilitation of Hand Impaired Patients
,”
IEEE Robot. Autom. Lett.
,
2
(
3
), pp.
1383
1390
.10.1109/LRA.2017.2669366
You do not currently have access to this content.