Abstract

Kinetostatic and dynamic analyses are of significance in designing compliant mechanisms. The design challenge of complex configurations with irregular building blocks, however, not only leads to difficult modeling but would also results in large errors and even wrong results. In this article, a systematic procedure of the transfer matrix method is developed for kinetostatic and dynamic analyses of compliant mechanisms with irregular serial-parallel building blocks. To this end, a generalized transfer matrix is established by shifting end nodes of all adjacent flexure members to being coincided. Uniform transfer matrix formulations of purely parallel and parallel-clamped subchains are derived as well. The systematic procedure enables a concise analysis process without the requirement of cumbersome mathematical derivations to deal with irregular connection of flexure building blocks, thus facilitating a parametric modeling that is not only robust but also computationally efficient. A practical design is implemented to show the considerable reduction of modeling complexity and enhancement of prediction accuracy with the presented approach.

References

1.
Liu
,
C.
, and
Zhang
,
K.-T.
,
2024
, “
A Wearable Finger Tremor-Suppression Orthosis Using the PVC Gel Linear Actuator
,”
IEEE Robot. Autom. Lett.
,
9
(
4
).
2.
Ye
,
T.-T.
,
Ling
,
J.
,
Kang
,
X.
,
Feng
,
Z.
, and
Xiao
,
X.-H.
,
2021
, “
A Novel Two-Stage Constant Force Compliant Microgripper
,”
ASME J. Mech. Des.
,
143
(
5
), p.
053302
.
3.
Kassa
,
A. A.
,
Shirinzadeh
,
B.
,
Tran
,
K. S.
,
Lai
,
K. Z.
,
Tian
,
Y.
,
Qin
,
Y.
, and
Wei
,
H.
,
2024
, “
Development of a Large-Range XY-Compliant Micropositioning Stage With Laser-Based Sensing and Active Disturbance Rejection Control
,”
Sensors (Basel)
,
24
(
2
), p.
663
.
4.
Sun
,
X.-T.
,
Chen
,
W.-J.
,
Xiong
,
X.
,
Chen
,
W.-Y.
, and
Jin
,
Y.
,
2022
, “
A Variable Configuration Force Sensor With Adjustable Resolution for Robotic Applications
,”
IEEE Trans. Ind. Electron.
,
70
(
2
), pp.
2066
2075
.
5.
Tran
,
P. A.
,
Ramirez
,
R.
,
Tran
,
T.
,
Contreras-Esquen
,
A.
,
Moghadam
,
A. A. A.
, and
Tekes
,
A.
,
2022
, “
Deformation Analysis of Planar Closed Chain Compliant Mechanism and Soft Robot Using Matlab Simscape and Anfis
,”
Proceedings of the 2022 IEEE 19th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET)
,
Marietta, GA
,
Dec. 19–21
,
IEEE
, pp.
219
224
.
6.
Ma
,
N.
,
Cheneler
,
D.
, and
Monk
,
S. D.
,
2024
, “
Improving the Kinematic Accuracy of a Collaborative Continuum Robot by Using Flexure-Hinges
,”
Heliyon
,
10
(
4
), p.
e26144
.
7.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2011
, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011001
.
8.
Hoetmer
,
K.
,
Herder
,
J.-L.
, and
Kim
,
C. J.
,
2009
, “
A Building Block Approach for the Design of Statically Balanced Compliant Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
49040
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
313
323
.
9.
Ling
,
M.-X.
,
Howell
,
L. L.
,
Cao
,
J.-Y.
, and
Chen
,
G. M.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
72
(
3
), p.
030802
.
10.
Niu
,
M.-Q.
,
Yang
,
B.-T.
,
Yang
,
Y.-K.
, and
Meng
,
G.
,
2020
, “
Modelling and Parameter Design of a 3-DOF Compliant Platform Driven by Magnetostrictive Actuators
,”
Precis. Eng.
,
66
, pp.
255
268
.
11.
Sorgonà
,
O.
,
Belfiore
,
N. P.
,
Giannini
,
O.
, and
Verotti
,
M.
,
2023
, “
Application of the Ellipse of Elasticity Theory to the Functional Analysis of Planar Compliant Mechanisms
,”
Mech. Mach. Theory
,
184
, p.
105308
.
12.
Choi
,
K.-B.
,
Lee
,
J. J.
,
Kim
,
G. H.
,
Lim
,
H. J.
, and
Kwon
,
S. G.
,
2018
, “
Amplification Ratio Analysis of a Bridge-Type Mechanical Amplification Mechanism Based on a Fully Compliant Model
,”
Mech. Mach. Theory
,
121
, pp.
355
372
.
13.
Wei
,
H.
,
Shirinzadeh
,
B.
,
Li
,
W.
,
Clark
,
L.
,
Pinskier
,
J.
, and
Wang
,
Y.
,
2017
, “
Development of Piezo-Driven Compliant Bridge Mechanisms: General Analytical Equations and Optimization of Displacement Amplification
,”
Micromachines (Basel)
,
8
(
8
), p.
238
.
14.
Elsisy
,
M. M.
,
Arafa
,
M. H.
,
Saleh
,
C. A.
, and
Anis
,
Y. H.
,
2021
, “
Modeling of a Symmetric Five-Bar Displacement Amplification Compliant Mechanism for Energy Harvesting
,”
Sensors (Basel)
,
21
(
4
), p.
1095
.
15.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
16.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
Extension Effects in Compliant Joints and Pseudo-Rigid-Body Models
,”
ASME J. Mech. Des.
,
138
(
9
), p.
092302
.
17.
Šalinić
,
S.
, and
Nikolić
,
A.
,
2018
, “
A New Pseudo-Rigid-Body Model Approach for Modeling the Quasi-Static Response of Planar Flexure-Hinge Mechanisms
,”
Mech. Mach. Theory
,
124
, pp.
150
161
.
18.
Pei
,
X.
,
Yu
,
J.-J.
,
Zong
,
G. H.
, and
Bi
,
S.-S.
,
2010
, “
An Effective Pseudo-Rigid-Body Method for Beam-Based Compliant Mechanisms
,”
Precis. Eng.
,
34
(
3
), pp.
634
639
.
19.
Bilancia
,
P.
,
Berselli
,
G.
,
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2019
, “
A CAD/CAE Integration Framework for Analyzing and Designing Spatial Compliant Mechanisms via Pseudo-Rigid-Body Methods
,”
Rob. Comput. Integr. Manuf.
,
56
, pp.
287
302
.
20.
Hargrove
,
B.
,
Nastevska
,
A.
,
Frecker
,
M.
, and
Jovanova
,
J.
,
2022
, “
Pseudo Rigid Body Model for a Nonlinear Folding Compliant Mechanism
,”
Mech. Mach. Theory
,
176
, p.
105017
.
21.
Wen
,
K.-F.
, and
Burgner-Kahrs
,
J.
,
2023
, “
Modeling and Analysis of Tendon-Driven Parallel Continuum Robots Under Constant Curvature and Pseudo-Rigid-Body Assumptions
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041003
.
22.
Jin
,
M.-H.
,
Luo
,
Y.-K.
,
Xu
,
X.
,
Xie
,
B.-W.
,
Wang
,
W.-S.
,
Li
,
Z.-W.
, and
Yang
,
Z.
,
2024
, “
Normal Contact Stress Analysis of Large-Deflection Compliant Mechanisms Using a CPRBM-Based Method
,”
Mech. Mach. Theory
,
191
, p.
105524
.
23.
Koseki
,
Y.
,
Tanikawa
,
T.
,
Koyachi
,
N.
, and
Arai
,
T.
,
2002
, “
Kinematic Analysis of a Translational 3-dof Micro-Parallel Mechanism Using the Matrix Method
,”
Adv. Rob.
,
16
(
3
), pp.
251
264
.
24.
Noveanu
,
S.
,
Lobontiu
,
N.
,
Lazaro
,
J.
, and
Mandru
,
D.
,
2015
, “
Substructure Compliance Matrix Model of Planar Branched Flexure-Hinge Mechanisms: Design, Testing and Characterization of a Gripper
,”
Mech. Mach. Theory
,
91
, pp.
1
20
.
25.
Li
,
Y.-M.
, and
Xu
,
Q.-S.
,
2009
, “
Development and Assessment of a Novel Decoupled XY Parallel Micropositioning Platform
,”
IEEE/ASME Trans. Mechatron.
,
15
(
1
), pp.
125
135
.
26.
Zhang
,
S.
,
Liu
,
J.-F.
,
Ding
,
H.-F.
, and
Gao
,
G.-H.
,
2021
, “
A Novel Compliance Modeling Method for Compliant Parallel Mechanisms and Its Application
,”
Mech. Mach. Theory
,
162
, p.
104336
.
27.
Zhang
,
S.-S.
, and
Zhang
,
L.-S.
,
2024
, “
Stiffness Modeling and Deformation Analysis of Parallel Manipulators Based on the Principal Axes Decomposition of Compliance Matrices
,”
ASME J. Mech. Rob.
,
16
(
4
), p.
041001
.
28.
Platl
,
V.
, and
Zentner
,
L.
,
2022
, “
An Analytical Method for Calculating the Natural Frequencies of Spatial Compliant Mechanisms
,”
Mech. Mach. Theory
,
175
, p.
104939
.
29.
Pinto-Cruz
,
M. C.
,
2024
, “
A Modified Transfer Matrix Method for Static and Dynamic Analysis of Beams That Eliminates the Need to Compute the Inverse of the Zero Matrix
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
,
48
(
5
), pp.
1
16
.
30.
Abbas
,
L. K.
,
Zhou
,
Q.
,
Bestle
,
D.
, and
Rui
,
X.
,
2017
, “
A Unified Approach for Treating Linear Multibody Systems Involving Flexible Beams
,”
Mech. Mach. Theory
,
107
, pp.
197
209
.
31.
Torres-Guzmán
,
J. C.
,
Díaz-de-Anda
,
A.
,
Martínez-Argüello
,
A. M.
, and
Arriaga
,
J.
,
2024
, “
Exact Closed Forms for the Transfer Matrix of Free Oscillations in Finite Periodic Timoshenko–Ehrenfest Beams
,”
Results Phys.
,
59
, p.
107569
.
32.
Feyzollahzadeh
,
M.
, and
Bamdad
,
M.
,
2022
, “
An Efficient Technique in Transfer Matrix Method for Beam-Like Structures Vibration Analysis
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
236
(
14
), pp.
7641
7656
.
33.
Zettl
,
B.
,
Szyszkowski
,
W.
, and
Zhang
,
W. J.
,
2005
, “
Accurate Low DOF Modeling of a Planar Compliant Mechanism With Flexure Hinges: The Equivalent Beam Methodology
,”
Precis. Eng.
,
29
(
2
), pp.
237
245
.
34.
Shen
,
Y.-P.
,
Chen
,
D.-X.
,
Jiang
,
W.
, and
Luo
,
X. J. P. E.
,
2014
, “
Spatial Force-Based Non-Prismatic Beam Element for Static and Dynamic Analyses of Circular Flexure Hinges in Compliant Mechanisms
,”
Precis. Eng.
,
38
(
2
), pp.
311
320
.
35.
Li
,
H.-Y.
,
Guo
,
F.-Y.
,
Wang
,
Y.-R.
,
Wang
,
Z.-P.
,
Li
,
C.-L.
,
Ling
,
M.-X.
, and
Hao
,
G.-B.
,
2022
, “
Design and Modeling of a Compact Compliant Stroke Amplification Mechanism With Completely Distributed Compliance for Ground-Mounted Actuators
,”
Mech. Mach. Theory
,
167
, p.
104566
.
36.
Ling
,
M.-X.
,
Song
,
D.-Z.
,
Zhang
,
X.-M.
,
He
,
X.
,
Li
,
H.
,
Wu
,
M.-X.
,
Cao
,
L.
, and
Lu
,
S.
,
2022
, “
Analysis and Design of Spatial Compliant Mechanisms Using a 3-D Dynamic Stiffness Model
,”
Mech. Mach. Theory
,
168
, p.
104581
.
37.
Choi
,
K.-B.
,
Lee
,
J. J.
, and
Hata
,
S.
,
2010
, “
A Piezo-Driven Compliant Stage With Double Mechanical Amplification Mechanisms Arranged in Parallel
,”
Sens. Actuators, A
,
161
(
1–2
), pp.
173
181
.
38.
Dong
,
Y.
,
Gao
,
F.
, and
Yue
,
Y.
,
2016
, “
Modeling and Experimental Study of a Novel 3-RPR Parallel Micro-Manipulator
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
115
124
.
39.
Li
,
J.-J.
, and
Chen
,
G.-M.
,
2018
, “
A General Approach for Generating Kinetostatic Models for Planar Flexure-Based Compliant Mechanisms Using Matrix Representation
,”
Mech. Mach. Theory
,
129
, pp.
131
147
.
40.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2019
, “
Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis
,”
Mech. Mach. Theory
,
133
, pp.
365
394
.
41.
Wu
,
S.-L.
,
Shao
,
Z.-X.
,
Su
,
H.-J.
, and
Fu
,
H.-Y.
,
2019
, “
An Energy-Based Approach for Kinetostatic Modeling of General Compliant Mechanisms
,”
Mech. Mach. Theory
,
142
.
42.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
43.
Chen
,
G. M.
,
Ma
,
F. L.
,
Hao
,
G. B.
, and
Zhu
,
W. D.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam Constraint Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
.
44.
Li
,
S. Y.
,
Hao
,
G. B.
, and
Wright
,
W. M. D.
,
2021
, “
Design and Modelling of an Anti-Buckling Compliant Universal Joint With a Compact Configuration
,”
Mech. Mach. Theory
,
156
, p.
104162
.
45.
Ling
,
M.-X.
,
Yuan
,
L.
, and
Zhang
,
X.-M.
,
2024
, “
Geometrically Nonlinear Analysis of Compliant Mechanisms Using a Dynamic Beam Constraint Model (DBCM)
,”
Mech. Mach. Theory
,
191
, p.
105489
.
46.
Van Tran
,
H.
,
Ngo
,
T. H.
,
Tran
,
N. D. K.
,
Dang
,
T. N.
,
Dao
,
T.-P.
, and
Wang
,
D.-A.
,
2018
, “
A Threshold Accelerometer Based on a Tristable Mechanism
,”
Mechatronics
,
53
, pp.
39
55
.
47.
Ngo
,
T. H.
,
Tran
,
N. D. K.
,
Le
,
H. S.
,
Nguyen
,
V. B.
, and
Phan
,
V. D.
, “
Design and Analysis the Compliant Inner Tristable Mechanism With Chain Beam Constraint Method
,”
AIP Conf. Proc.
,
2420
, p.
060002
.
48.
Bilancia
,
P.
,
Berselli
,
G.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
On the Modeling of a Contact-Aided Cross-Axis Flexural Pivot
,”
Mech. Mach. Theory
,
143
, p.
103618
.
49.
Lu
,
M.-M.
,
Zhao
,
D.-P.
,
Lin
,
J. Q.
,
Zhou
,
X.-Q.
,
Zhou
,
J.-K.
,
Chen
,
B.
, and
Wang
,
H.
,
2018
, “
Design and Analysis of a Novel Piezoelectrically Actuated Vibration Assisted Rotation Cutting System
,”
Smart Mater. Struct.
,
27
(
9
), p.
095020
.
50.
Li
,
L.-J.
,
Zhang
,
D.
,
Qu
,
H.-B.
, and
Wang
,
Y.-J.
,
2022
, “
Generalized Model and Configuration Design of Multiple-Axis Flexure Hinges
,”
Mech. Mach. Theory
,
169
, p.
104677
.
51.
Wang
,
L.-P.
,
Jiang
,
Y.
, and
Li
,
T.-M.
,
2017
, “
Analytical Compliance Modeling of Serial Flexure-Based Compliant Mechanism Under Arbitrary Applied Load
,”
Chin. J. Mech. Eng.
,
30
(
4
), pp.
951
962
.
52.
Ling
,
M.-X.
,
Zhang
,
X.-M.
, and
Cao
,
J.-Y.
,
2022
, “
Extended Dynamic Stiffness Model for Analyzing Flexure-Hinge Mechanisms With Lumped Compliance
,”
ASME J. Mech. Des.
,
144
(
1
), p.
013304
.
53.
Arredondo-Soto
,
M.
,
Cuan-Urquizo
,
E.
, and
Gómez-Espinosa
,
A.
,
2022
, “
The Compliance Matrix Method for the Kinetostatic Analysis of Flexure-Based Compliant Parallel Mechanisms: Conventions and General Force–Displacement Cases
,”
Mech. Mach. Theory
,
168
, p.
104583
.
54.
Ling
,
M.-X.
,
Yuan
,
L.
,
Zeng
,
T.-J.
, and
Zhang
,
X.-M.
,
2024
, “
Enabling the Transfer Matrix Method to Model Serial–Parallel Compliant Mechanisms Including Curved Flexure Beams
,”
Int. J. Mech. Syst. Dyn.
,
4
(
1
), pp.
48
62
.
55.
Wang
,
J.-J.
,
Yang
,
Y.
,
Yang
,
R.
,
Feng
,
P.-F.
, and
Guo
,
P.
,
2019
, “
On the Validity of Compliance-Based Matrix Method in Output Compliance Modeling of Flexure-Hinge Mechanism
,”
Precis. Eng.
,
56
, pp.
485
495
.
56.
Ling
,
M.-X.
,
Yuan
,
L.
,
Lai
,
J.-H.
,
Wei
,
H.-X.
, and
Zhang
,
X.-M.
,
2023
, “
Compliance and Precision Modeling of General Notch Flexure Hinges Using a Discrete-Beam Transfer Matrix
,”
Precis. Eng.
,
82
, pp.
233
250
.
57.
Zhou
,
H.
,
Ling
,
M.-X.
,
Yin
,
Y.-H.
, and
Wu
,
S.-L.
,
2024
, “
Transfer Matrix Modeling for Asymmetrically-Nonuniform Curved Beams by Beam-Discrete Strategies
,”
Int. J. Mech. Sci.
,
276
, p.
109425
.
58.
Wu
,
S.
,
Ling
,
M.
,
Wang
,
Y.
, and
Huang
,
T.
,
2024
, “
Electro-Mechanical Transfer Matrix Modeling of Piezoelectric Actuators and Application for Elliptical Flexure Amplifiers
,”
Precis. Eng.
,
85
, pp.
279
290
.
You do not currently have access to this content.