In this paper, the authors present a general methodology for computing the configuration space for three-degree-of-freedom parallel manipulators so that the relation between input and output variables can be easily assessed. Making use of an entity called the reduced configuration space, all solutions of the direct kinematic problem in parallel manipulators are solved. The graphical representation of this entity enables the location of the direct kinematic solutions to be analyzed so as to make use of a wider operational workspace by means of path planning. A descriptive study is presented regarding the diverse possible paths that allow changing between direct kinematic solutions, thus, enlarging the manipulator’s range of motion.

1.
Wang
,
J.
, and
Gosselin
,
C.
, 2004, “
Singularity Loci of a Special Class of Spherical 3-DOF Parallel Mechanisms With Prismatic Actuators
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
319
326
.
2.
Bonev
,
I.
, and
Gosselin
,
C.
, 2005, “
Singularity Loci of Spherical Parallel Mechanisms
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona
, Spain, pp.
2968
2973
.
3.
Li
,
H.
,
Gosselin
,
C.
, and
Richard
,
M.
, 2007, “
Determination of the Maximal Singularity-Free Zones in the Six-Dimensional Workspace of the General Gough–Stewart Platform
,”
Mech. Mach. Theory
0094-114X,
42
, pp.
497
511
.
4.
Jiang
,
Q.
, and
Gosselin
,
C. M.
, 2008, “
The Maximal Singularity-Free Workspace of the Gough–Stewart Platform for a Given Orientation
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
112304
.
5.
Jiang
,
Q.
and
Gosselin
,
C.
, 2009, “
Geometric Optimization of the MSSM Gough-Stewart Platform
,”
ASME J. Mech. Rob.
1942-4302,
1
(
3
), p.
031006
.
6.
Jiang
,
Q.
and
Gosselin
,
C.
, 2010, “
Effects of Orientation Angles on the Singularity-Free Workspace and Orientation Optimization of the Gough-Stewart Platform
,”
ASME J. Mech. Rob.
1942-4302,
2
(
1
), p.
011001
.
7.
Merlet
,
J.
, 1999, “
Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison Between Different Geometries
,”
Int. J. Robot. Res.
0278-3649,
18
(
9
), pp.
902
916
.
8.
Gosselin
,
C.
,
Lavoie
,
E.
, and
Toutant
,
P.
, 1992, “
An Efficient Algorithm for the Graphical Representation of the Three-Dimensional Workspace of Parallel Manipulators
,”
22nd ASME Biennial Mechanisms Conference
.
9.
Kim
,
D.
,
Chung
,
W.
, and
Youm
,
Y.
, 1997, “
Geometrical Approach for the Workspace of 6-DOF Parallel Manipulators
,”
IEEE International Conference on Robotics and Automation
, pp.
2986
2991
.
10.
Masory
,
O.
, and
Wang
,
J.
, 1994, “
Workspace Evaluation of Stewart Platforms
,”
Adv. Rob.
0169-1864,
9
(
4
), pp.
443
461
.
11.
Dash
,
A.
,
Yeo
,
S.
,
Yang
,
G.
, and
Chen
,
I. -M.
, 2002, “
Workspace Analysis and Singularity Representation of Three-legged Parallel Manipulators
,”
ICARCV
, pp.
962
967
.
12.
Ferraresi
,
C.
,
Montacchini
,
G.
, and
Sorli
,
M.
, 1995, “
Workspace and Dexterity Evaluation of a 6 DOF Spatial Mechanism
,”
Ninth World Congress on the Theory of Machines and Mechanisms
, Milan, Italy, pp.
57
61
.
13.
Pott
,
A.
,
Franitza
,
D.
, and
Hiller
,
M.
, 2004, “
Orientation Workspace Verification for Parallel Kinematic Machines With Constant Length
,”
Mechatronics and Robotics Conference
.
14.
Bonev
,
I.
, and
Ryu
,
J.
, 1999, “
Workspace Analysis of 6-PRRS Parallel Manipulators Based on the Vertex Space Concept
,”
ASME Design Engineering Technical Conference
.
15.
Gosselin
,
C.
, 1990, “
Determination of Workspace of 6-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
112
, pp.
331
336
.
16.
Jo
,
D. -Y.
, and
Haug
,
E.
, 1989, “
Workspace Analysis of Closed-Loop Mechanisms With Unilateral Constraints
,”
ASME Design Automation Conference
.
17.
Raster
,
J.
, and
Perel
,
D.
, 1998, “
Generation of Manipulator Workspace Boundary Geometry Using the Monte Carlo Method and Interactive Computer Graphics
,”
ASME 20th Biennal Mechanisms Conference in Trends and Developments in Mechanisms, Machines and Robotics
, pp.
299
305
.
18.
Agrawal
,
S.
, 1991, “
Workspace Boundaries of Inparallel Manipulator Systems
,”
IEEE Trans. Rob. Autom.
1042-296X,
7
(
2
), pp.
94
99
.
19.
Chablat
,
D.
, and
Wenger
,
P.
, 1998, “
Working Modes and Aspects in Fully Parallel Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1964
1969
.
20.
Maass
,
J.
,
Kolbus
,
M.
,
Buddle
,
C.
,
Hesselbach
,
J.
, and
Schumacher
,
W.
, 2006, “
Control Strategies for Enlarging a Spatial Parallel Robots Workspace by Change of Configuration
,”
Proceedings of the Fifth Chemnitz Parallel Kinematics Seminar
, Apr. 25–26, pp.
515
530
.
21.
Hunt
,
K.
, and
Primrose
,
E.
, 1993, “
Assembly Configurations of Some In-Parallel-Actuated Manipulators
,”
Mech. Mach. Theory
0094-114X,
28
(
1
), pp.
31
42
.
22.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
, 1998, “
Singularity Free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
120
(
1
), pp.
73
79
.
23.
McAree
,
P.
, and
Daniel
,
R.
, 1999, “
An Explanation of Never-Special Assembly Changing Motions for 3-3 Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
18
(
6
), pp.
556
574
.
24.
Chablat
,
D.
, and
Wenger
,
P.
, 1998, “
Advances in Robot Kinematics: Analysis and Control
,
Workspace and Assembly Modes In Fully Parallel Manipulators: A Descriptive Study
,
Kluwer Academic
,
Salzburg, Austria
, pp.
117
126
.
25.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
, 2006, “
Singular Curves and Cusp Points in the Joint Space of 3-RPR Parallel Manipulators
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation
, Orlando, LA.
26.
Bamberger
,
H.
,
Wolf
,
A.
, and
Shoham
,
M.
, 2008, “
Assembly Mode Changing in Parallel Mechanisms
,”
IEEE Trans. Robot.
,
24
(
4
), pp.
765
772
.
27.
Macho
,
E.
,
Altuzarra
,
O.
,
Petuya
,
V.
, and
Hernandez
,
A.
, 2008, “
Workspace Enlargement Merging Assembly Modes. Application to the 3-ṞRR Planar Platform
,”
17th International Workshop on Robotics in Alpe-Adria-Danube Region
, Ancona, Italy, Sep. 15–17.
28.
Macho
,
E.
,
Altuzarra
,
O.
,
Pinto
,
C.
, and
Hernandez
,
A.
, 2008, “
Transitions Between Multiple Solutions of the Direct Kinematic Problem
,”
11th International Symposium Advances in Robot Kinematics
, France, Jun. 22–26.
29.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
, 2008, “
Non-Singular Assembly Mode Changing Motions for 3-RPR Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
43
(
4
), pp.
480
490
.
30.
Macho
,
E.
,
Altuzarrra
,
O.
,
Amezua
,
E.
, and
Hernandez
,
A.
, 2009, “
Obtaining Configuration Space and Singularity Maps for Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
44
, pp.
2110
2125
.
You do not currently have access to this content.