A mechanism, which, for any motion, does not apply reaction forces on the base, is said to be statically or force balanced. It is moment balanced or dynamically balanced if, moreover, it does not apply torques on the base. In this paper, an approach to determine the complete set of statically balanced spherical four-bar linkages is presented. Furthermore, it is shown that for all possible design parameters, it is not possible to dynamically balance such linkages.
Issue Section:
Research Papers
1.
Wu
, Y.
, and Gosselin
, C.
, 2004, “Synthesis of Reactionless Spatial 3-DoF and 6-DoF Mechanisms Without Separate Counter-Rotations
,” Int. J. Robot. Res.
0278-3649, 23
(6
), pp. 625
–642
.2.
Yoshida
, K.
, Hashizume
, K.
, and Abiko
, S.
, 2001, “Zero Reaction Maneuver: Flight Validation With ETS-VII Space Robot and Extension to Kinematically Redundant Arm
,” Proceedings of the IEEE International Conference on Robotics and Automation
, pp. 441
– 446
.3.
Agrawal
, S.
, and Shirumalla
, S.
, 1995, “Planning Motions of a Dual-Arm Free-Floating Manipulator Keeping the Base Inertially Fixed
,” Mech. Mach. Theory
0094-114X, 30
(1
), pp. 59
–70
.4.
Papadopoulos
, E.
, and Abu-Abed
, A.
, 1996, “On the Design of Zero Reaction Manipulator
,” ASME J. Mech. Des.
0161-8458, 118
(3
), pp. 372
–376
.5.
Verein Deutscher Ingenieure
, 1998, “Dynamics of Mechanisms, Rigid Body Mechanisms
,” Paper No. VDI 2149.6.
Van der Wijk
, V.
, Herder
, J. L.
, and Demeulenaere
, B.
, 2009, “Comparison of Various Dynamic Balancing Principles Regarding Additional Mass and Additional Inertia
,” ASME J. Mech. Rob.
1942-4302, 1
, p. 041006
.7.
Kochev
, I. S.
, 2000, “General Theory of Complete Shaking Moment Balancing of Planar Linkages: A Critical Review
,” Mech. Mach. Theory
0094-114X, 35
, pp. 1501
–1514
.8.
Foucault
, S.
, and Gosselin
, C. M.
, 2004, “Synthesis, Design, and Prototyping of a Planar Three Degree-of-Freedom Reactionless Parallel Mechanism
,” ASME J. Mech. Des.
0161-8458, 126
(6
), pp. 992
–999
.9.
Fattah
, A.
, and Agrawal
, S.
, 2006, “On the Design of Reactionless 3-DOF Planar Parallel Mechanisms
,” Mech. Mach. Theory
0094-114X, 41
, pp. 70
–82
.10.
Arakelian
, V.
, and Smith
, M.
, 2008, “Design of Planar 3-DOF 3-RRR Reactionless Parallel Manipulators
,” Mechatronics
0957-4158, 18
(10
), pp. 601
–606
.11.
Briot
, S.
, Bonev
, I.
, Gosselin
, C.
, and Arakelian
, V.
, 2009, “Complete Shaking Force and Shaking Moment Balancing of Planar Parallel Manipulators With Prismatic Pairs
,” Journal of Multi-body Dynamics
, 223
(1
), pp. 43
–52
.12.
Wu
, Y.
, and Gosselin
, C.
, 2007, “On the Dynamic Balancing of Multi-DOF Parallel Mechanisms With Multiple Legs
,” ASME J. Mech. Des.
0161-8458, 129
, pp. 234
–238
.13.
Chaudhary
, H.
, and Saha
, S.
, 2008, “Balancing of Shaking Forces and Shaking Moments for Planar Mechanisms Using the Equimomental Systems
,” Mech. Mach. Theory
0094-114X, 43
, pp. 310
–334
.14.
Berkof
, R. S.
, and Lowen
, G. G.
, 1971, “Theory of Shaking Moment Optimization of Force-Balanced Four-Bar Linkages
,” J. Eng. Ind.
0022-0817, 93
, pp. 53
–60
.15.
Ricard
, R.
, and Gosselin
, C.
, 2000, “On the Development of Reactionless Parallel Manipulators
,” ASME
Paper No. MECH-14098.16.
Gosselin
, C.
, Moore
, B.
, and Schicho
, J.
, 2009, “Dynamic Balancing of Planar Mechanisms Using Toric Geometry
,” J. Symb. Comput.
0747-7171, 44
(9
), pp. 1346
–1358
.17.
Karouia
, M.
, and Hervé
, J.
, 2002, “A Family of Novel Orientational 3-DOF Parallel Robots
,” Proceedings of the 14th CISM-IFToMM RoManSy Symposium
, J. G. G.
Bianchi
and J.
Rzymkowski
, eds., Springer
, New York
, pp. 359
–368
.18.
Kong
, X.
, and Gosselin
, C.
, 2004, “Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators
,” Int. J. Robot. Res.
0278-3649, 23
, pp. 237
–245
.19.
Li
, Q.
, and Huang
, Z.
, 2003, “A Family of Symmetrical Lower-Mobility Parallel Mechanisms With Spherical and Parallel Subchains
,” J. Intell. Robotic Syst.
0921-0296, 20
(6
), pp. 297
–305
.20.
Gibson
, C.
, and Selig
, J.
, 1988, “On Movable Hinged Spherical Quadrilaterals. Part I. The Configuration Space
,” Mech. Mach. Theory
0094-114X, 23
(1
), pp. 13
–18
.21.
Gibson
, C.
, and Selig
, J.
, 1988, “On Movable Hinged Spherical Quadrilaterals. Part II. Singularities and Reductions
,” Mech. Mach. Theory
0094-114X, 23
(1
), pp. 19
–24
.22.
Gosselin
, C.
, 1997, “Note sur l’équilibrage de Berkov et Lowen
,” Proceedings of the Canadian Congress of Applied Mechanics(CANCAM 97)
, pp. 497
–498
.23.
Moore
, B.
, 2009, “Dynamic Balancing of 4R Linkages
,” www.moorebrian.com/dynbal/www.moorebrian.com/dynbal/24.
Meriam
, J.
, and Kraige
, L.
, 1987, “Dynamics
,” Engineering Mechanics
, Wiley
, New York
, Vol. 2
.25.
Moore
, B.
, 2009, “Dynamic Balancing of Linkages by Algebraic Methods
,” Ph.D. thesis, Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria.26.
Berkof
, R. S.
, and Lowen
, G. G.
, 1969, “A New Method for Completely Force Balancing Simple Linkage
,” J. Eng. Ind.
0022-0817, 91
, pp. 21
–26
.27.
Hughes
, P.
, 1986, Spacecraft Attitude Dynamics
, Wiley
, New York
.28.
2004,
Quantifier Elimination and Cylindrical Algebraic Decomposition
, B.
Caviness
and J.
Johnson
, eds., Springer
, New York
.29.
Brown
, C. W.
, 2001, “Simple CAD Construction and Its Applications
,” J. Symb. Comput.
0747-7171, 31
(5
), pp. 521
–547
.30.
Dolzmann
, A.
, and Sturm
, T.
, 1997, “Redlog: Computer Algebra Meets Computer Logic
,” ACM SIGSAM Bull.
, 31
(2
), pp. 2
–9
.31.
2005, MATHEMATICA Edition: Version 5.2, Wolfram Research Inc.
32.
Moore
, B.
, and Vajda
, R.
, 2008, “Some Experiments Using Quantifier Elimination to Prove the Non-Existence of Dynamically Balanced Spherical Linkages
,” SFB F013 Technical Report No. 2008-10.33.
Gosselin
, C.
, 1998, Computational Methods in Mechanical Systems: Mechanism Analysis, Synthesis, and Optimization, NATO ASI Series
, Springer
, Berlin
, pp. 68
–96
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.