A mechanism, which, for any motion, does not apply reaction forces on the base, is said to be statically or force balanced. It is moment balanced or dynamically balanced if, moreover, it does not apply torques on the base. In this paper, an approach to determine the complete set of statically balanced spherical four-bar linkages is presented. Furthermore, it is shown that for all possible design parameters, it is not possible to dynamically balance such linkages.

1.
Wu
,
Y.
, and
Gosselin
,
C.
, 2004, “
Synthesis of Reactionless Spatial 3-DoF and 6-DoF Mechanisms Without Separate Counter-Rotations
,”
Int. J. Robot. Res.
0278-3649,
23
(
6
), pp.
625
642
.
2.
Yoshida
,
K.
,
Hashizume
,
K.
, and
Abiko
,
S.
, 2001, “
Zero Reaction Maneuver: Flight Validation With ETS-VII Space Robot and Extension to Kinematically Redundant Arm
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
441
446
.
3.
Agrawal
,
S.
, and
Shirumalla
,
S.
, 1995, “
Planning Motions of a Dual-Arm Free-Floating Manipulator Keeping the Base Inertially Fixed
,”
Mech. Mach. Theory
0094-114X,
30
(
1
), pp.
59
70
.
4.
Papadopoulos
,
E.
, and
Abu-Abed
,
A.
, 1996, “
On the Design of Zero Reaction Manipulator
,”
ASME J. Mech. Des.
0161-8458,
118
(
3
), pp.
372
376
.
5.
Verein Deutscher Ingenieure
, 1998, “
Dynamics of Mechanisms, Rigid Body Mechanisms
,” Paper No. VDI 2149.
6.
Van der Wijk
,
V.
,
Herder
,
J. L.
, and
Demeulenaere
,
B.
, 2009, “
Comparison of Various Dynamic Balancing Principles Regarding Additional Mass and Additional Inertia
,”
ASME J. Mech. Rob.
1942-4302,
1
, p.
041006
.
7.
Kochev
,
I. S.
, 2000, “
General Theory of Complete Shaking Moment Balancing of Planar Linkages: A Critical Review
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
1501
1514
.
8.
Foucault
,
S.
, and
Gosselin
,
C. M.
, 2004, “
Synthesis, Design, and Prototyping of a Planar Three Degree-of-Freedom Reactionless Parallel Mechanism
,”
ASME J. Mech. Des.
0161-8458,
126
(
6
), pp.
992
999
.
9.
Fattah
,
A.
, and
Agrawal
,
S.
, 2006, “
On the Design of Reactionless 3-DOF Planar Parallel Mechanisms
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
70
82
.
10.
Arakelian
,
V.
, and
Smith
,
M.
, 2008, “
Design of Planar 3-DOF 3-RRR Reactionless Parallel Manipulators
,”
Mechatronics
0957-4158,
18
(
10
), pp.
601
606
.
11.
Briot
,
S.
,
Bonev
,
I.
,
Gosselin
,
C.
, and
Arakelian
,
V.
, 2009, “
Complete Shaking Force and Shaking Moment Balancing of Planar Parallel Manipulators With Prismatic Pairs
,”
Journal of Multi-body Dynamics
,
223
(
1
), pp.
43
52
.
12.
Wu
,
Y.
, and
Gosselin
,
C.
, 2007, “
On the Dynamic Balancing of Multi-DOF Parallel Mechanisms With Multiple Legs
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
234
238
.
13.
Chaudhary
,
H.
, and
Saha
,
S.
, 2008, “
Balancing of Shaking Forces and Shaking Moments for Planar Mechanisms Using the Equimomental Systems
,”
Mech. Mach. Theory
0094-114X,
43
, pp.
310
334
.
14.
Berkof
,
R. S.
, and
Lowen
,
G. G.
, 1971, “
Theory of Shaking Moment Optimization of Force-Balanced Four-Bar Linkages
,”
J. Eng. Ind.
0022-0817,
93
, pp.
53
60
.
15.
Ricard
,
R.
, and
Gosselin
,
C.
, 2000, “
On the Development of Reactionless Parallel Manipulators
,”
ASME
Paper No. MECH-14098.
16.
Gosselin
,
C.
,
Moore
,
B.
, and
Schicho
,
J.
, 2009, “
Dynamic Balancing of Planar Mechanisms Using Toric Geometry
,”
J. Symb. Comput.
0747-7171,
44
(
9
), pp.
1346
1358
.
17.
Karouia
,
M.
, and
Hervé
,
J.
, 2002, “
A Family of Novel Orientational 3-DOF Parallel Robots
,”
Proceedings of the 14th CISM-IFToMM RoManSy Symposium
,
J. G. G.
Bianchi
and
J.
Rzymkowski
, eds.,
Springer
,
New York
, pp.
359
368
.
18.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
23
, pp.
237
245
.
19.
Li
,
Q.
, and
Huang
,
Z.
, 2003, “
A Family of Symmetrical Lower-Mobility Parallel Mechanisms With Spherical and Parallel Subchains
,”
J. Intell. Robotic Syst.
0921-0296,
20
(
6
), pp.
297
305
.
20.
Gibson
,
C.
, and
Selig
,
J.
, 1988, “
On Movable Hinged Spherical Quadrilaterals. Part I. The Configuration Space
,”
Mech. Mach. Theory
0094-114X,
23
(
1
), pp.
13
18
.
21.
Gibson
,
C.
, and
Selig
,
J.
, 1988, “
On Movable Hinged Spherical Quadrilaterals. Part II. Singularities and Reductions
,”
Mech. Mach. Theory
0094-114X,
23
(
1
), pp.
19
24
.
22.
Gosselin
,
C.
, 1997, “
Note sur l’équilibrage de Berkov et Lowen
,”
Proceedings of the Canadian Congress of Applied Mechanics(CANCAM 97)
, pp.
497
498
.
23.
Moore
,
B.
, 2009, “
Dynamic Balancing of 4R Linkages
,” www.moorebrian.com/dynbal/www.moorebrian.com/dynbal/
24.
Meriam
,
J.
, and
Kraige
,
L.
, 1987, “
Dynamics
,”
Engineering Mechanics
,
Wiley
,
New York
, Vol.
2
.
25.
Moore
,
B.
, 2009, “
Dynamic Balancing of Linkages by Algebraic Methods
,” Ph.D. thesis, Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria.
26.
Berkof
,
R. S.
, and
Lowen
,
G. G.
, 1969, “
A New Method for Completely Force Balancing Simple Linkage
,”
J. Eng. Ind.
0022-0817,
91
, pp.
21
26
.
27.
Hughes
,
P.
, 1986,
Spacecraft Attitude Dynamics
,
Wiley
,
New York
.
28.
2004,
Quantifier Elimination and Cylindrical Algebraic Decomposition
,
B.
Caviness
and
J.
Johnson
, eds.,
Springer
,
New York
.
29.
Brown
,
C. W.
, 2001, “
Simple CAD Construction and Its Applications
,”
J. Symb. Comput.
0747-7171,
31
(
5
), pp.
521
547
.
30.
Dolzmann
,
A.
, and
Sturm
,
T.
, 1997, “
Redlog: Computer Algebra Meets Computer Logic
,”
ACM SIGSAM Bull.
,
31
(
2
), pp.
2
9
.
31.
2005, MATHEMATICA Edition: Version 5.2, Wolfram Research Inc.
32.
Moore
,
B.
, and
Vajda
,
R.
, 2008, “
Some Experiments Using Quantifier Elimination to Prove the Non-Existence of Dynamically Balanced Spherical Linkages
,” SFB F013 Technical Report No. 2008-10.
33.
Gosselin
,
C.
, 1998,
Computational Methods in Mechanical Systems: Mechanism Analysis, Synthesis, and Optimization, NATO ASI Series
,
Springer
,
Berlin
, pp.
68
96
.
You do not currently have access to this content.