In the research of multicontact robotic systems, the equilibrium test and contact force distribution are two fundamental problems, which need to determine the existence of feasible contact forces subject to the friction constraint, and their optimal values for counterbalancing the other wrenches applied on the system and maintaining the system in equilibrium. All the wrenches, except those generated by the contact forces, can be treated as a whole, called the external wrench. The external wrench is time-varying in a dynamic system and both problems usually must be solved in real time. This paper presents an efficient procedure for solving the two problems. Using the linearized friction model, the resultant wrenches that can be produced by all contacts constitute a polyhedral convex cone in six-dimensional wrench space. Given an external wrench, the procedure computes the minimum distance between the wrench cone and the required equilibrating wrench, which is equal but opposite to the external wrench. The zero distance implies that the equilibrating wrench lies in the wrench cone, and that the external wrench can be resisted by contacts. Then, a set of linearly independent wrench vectors in the wrench cone are also determined, such that the equilibrating wrench can be written as their positive combination. This procedure always terminates in finite iterations and runs very fast, even in six-dimensional wrench space. Based on it, two contact force distribution methods are provided. One combines the procedure with the linear programming technique, yielding optimal contact forces with linear time complexity. The other directly utilizes the procedure without the aid of any general optimization technique, yielding suboptimal contact forces with nearly constant time complexity. Effective strategies are suggested to ensure the solution continuity.

1.
Salisbury
,
J. K.
, and
Roth
,
B.
, 1983, “
Kinematic and Force Analysis of Articulated Hands
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
(
1
), pp.
35
41
.
2.
Kumar
,
V. R.
, and
Waldron
,
K. J.
, 1988, “
Force Distribution in Closed Kinematic Chains
,”
IEEE J. Rob. Autom.
0882-4967,
4
(
6
), pp.
657
664
.
3.
Kerr
,
J.
, and
Roth
,
B.
, 1986, “
Analysis of Multifingered Hands
,”
Int. J. Robot. Res.
0278-3649,
4
(
4
), pp.
3
17
.
4.
Cheng
,
F. -T.
, and
Orin
,
D. E.
, 1990, “
Efficient Algorithm for Optimal Force Distribution—The Compact-Dual LP Method
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
2
), pp.
178
187
.
5.
Cheng
,
F. -T.
, and
Orin
,
D. E.
, 1991, “
Optimal Force Distribution in Multiple-Chain Robotic System
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
21
(
1
), pp.
13
24
.
6.
Cheng
,
F. -T.
, and
Orin
,
D. E.
, 1991, “
Efficient Formulation of the Force Distribution Equations for Simple Closed-Chain Robotic Mechanisms
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
21
(
1
), pp.
25
32
.
7.
Liu
,
Y. -H.
, 1999, “
Qualitative Test and Force Optimization of 3-D Frictional Form-Closure Grasps Using Linear Programming
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
1
), pp.
163
173
.
8.
Klein
,
C. A.
, and
Kittivatcharapong
,
S.
, 1990, “
Optimal Force Distribution for the Legs of a Walking Machine With Friction Cone Constraints
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
1
), pp.
73
85
.
9.
Nakamura
,
Y.
,
Nagai
,
K.
, and
Yoshikawa
,
T.
, 1989, “
Dynamics and Stability in Coordination of Multiple Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
8
(
2
), pp.
44
61
.
10.
Nahon
,
M.
, and
Angeles
,
J.
, 1991, “
Optimization of Dynamic Forces in Mechanical Hands
,”
ASME J. Mech. Des.
0161-8458,
113
(
2
), pp.
167
173
.
11.
Nahon
,
M.
, and
Angeles
,
J.
, 1992, “
Real-Time Force Optimization in Parallel Kinematic Chains Under Inequality Constraints
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
4
), pp.
439
450
.
12.
Chen
,
J. -S.
,
Cheng
,
F. -T.
,
Yang
,
K. -T.
,
Kung
,
F. -C.
, and
Sun
,
Y. -Y.
, 1999, “
Optimal Force Distribution in Multilegged Vehicles
,”
Robotica
0263-5747,
17
(
2
), pp.
159
172
.
13.
Buss
,
M.
,
Hashimoto
,
H.
, and
Moore
,
J. B.
, 1996, “
Dextrous Hand Grasping Force Optimization
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
(
3
), pp.
406
418
.
14.
Buss
,
M.
,
Faybusovich
,
L.
, and
Moore
,
J. B.
, 1998, “
Dikin-Type Algorithms for Dextrous Grasping Force Optimization
,”
Int. J. Robot. Res.
0278-3649,
17
(
8
), pp.
831
839
.
15.
Han
,
L.
,
Trinkle
,
J. C.
, and
Li
,
Z. X.
, 2000, “
Grasp Analysis as Linear Matrix Inequality Problems
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
6
), pp.
663
674
.
16.
Helmke
,
U.
,
Hüper
,
K.
, and
Moore
,
J. B.
, 2002, “
Quadratically Convergent Algorithms for Optimal Dextrous Hand Grasping
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
2
), pp.
138
146
.
17.
Liu
,
G. F.
, and
Li
,
Z. X.
, 2004, “
Real-Time Grasping-Force Optimization for Multifingered Manipulation: Theory and Experiments
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
9
(
1
), pp.
65
77
.
18.
Boyd
,
S. P.
, and
Wegbreit
,
B.
, 2007, “
Fast Computation of Optimal Contact Forces
,”
IEEE Trans. Rob.
1552-3098,
23
(
6
), pp.
1117
1132
.
19.
Zuo
,
B. -R.
, and
Qian
,
W. -H.
, 2000, “
A General Dynamic Force Distribution Algorithm for Multifingered Grasping
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
30
(
1
), pp.
185
192
.
20.
Zheng
,
Y.
, and
Qian
,
W. -H.
, 2005, “
Dynamic Force Distribution in Multifingered Grasping by Decomposition and Positive Combination
,”
IEEE Trans. Rob.
1552-3098,
21
(
4
), pp.
718
726
.
21.
Zheng
,
Y.
, and
Qian
,
W. -H.
, 2006, “
A Fast Procedure for Optimizing Dynamic Force Distribution in Multifingered Grasping
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
36
(
6
), pp.
1417
1422
.
22.
Ji
,
Z.
, and
Roth
,
B.
, 1988, “
Direct Computation of Grasping Force for Three-Finger Tip-Prehension Grasps
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
(
4
), pp.
405
413
.
23.
Kumar
,
V. R.
, and
Waldron
,
K. J.
, 1989, “
Suboptimal Algorithms for Force Distribution in Multifingered Grippers
,”
IEEE Trans. Rob. Autom.
1042-296X,
5
(
4
), pp.
491
498
.
24.
Zhou
,
D. B.
,
Low
,
K. H.
, and
Zielinska
,
T.
, 2000, “
An Efficient Foot-Force Distribution Algorithm for Quadruped Walking Robots
,”
Robotica
0263-5747,
18
(
4
), pp.
403
413
.
25.
Hong
,
D. W.
, and
Cipra
,
R. J.
, 2006, “
Visualization of the Contact Force Solution Space for Multi-Limbed Robots
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
295
302
.
26.
Hong
,
D. W.
, and
Cipra
,
R. J.
, 2006, “
Optimal Contact Force Distribution for Multi-Limbed Robots
,”
ASME J. Mech. Des.
0161-8458,
128
(
3
), pp.
566
573
.
27.
Fasoulas
,
J.
, and
Doulgeri
,
Z.
, 2008, “
Equilibrium Conditions of a Polygonal Object When Grasped by Soft-Rolling Contacts
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
130
(
2
), p.
021011
.
28.
Khatib
,
O.
,
Sentis
,
L.
, and
Park
,
J. -H.
, 2008, “
A Unified Framework for Whole-Body Humanoid Robot Control With Multiple Constraints and Contacts
,”
Adv. Rob.
0169-1864,
44
, pp.
303
312
.
29.
Park
,
J. -H.
, and
Khatib
,
O.
, 2008, “
Robot Multiple Contact Control
,”
Robotica
0263-5747,
26
(
05
), pp.
667
677
.
30.
Murray
,
R. M.
,
Li
,
Z. X.
, and
Sastry
,
S. S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton, FL
.
31.
Mulmuley
,
K.
, 1994,
Computational Geometry: An Introduction Through Randomized Algorithms
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
32.
Dantzig
,
G. B.
, and
Thapa
,
M. N.
, 1997,
Linear Programming—I: Introduction
,
Springer-Verlag
,
New York
.
33.
Khan
,
W. A.
, and
Angeles
,
J.
, 2006, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
168
178
.
You do not currently have access to this content.