Abstract

Conventional parallel robots are made of rigid materials for the purpose of fast and accurate localization, exhibiting limited performance in large-scale operations. Inspired by the softness and natural compliance of biological systems, this article proposes a rigid-flexible coupling cable-driven parallel robot. The concept of flexible cable and spring hybrid and working principle are introduced. The kinematics of single module and multiple modules connected in series are analyzed and equations are given, and the Lagrange equation is used to establish dynamic models. Finally, two methods are used to validate the kinematics and dynamics. One is to draw the specific structure with the posture of the end-effector and measure the cable length to compare it with the analytical solution in the kinematic model. The other is to build the structure and joint characteristics in simulink, given the posture of the end-effector and the external force/torque, the cable length and the force applied are compared with those obtained from the dynamic model. The reasonableness of the mechanism and the feasibility of the kinematic and dynamic models are verified.

References

1.
Stewart
,
D.
,
1966
, “
A Platform With Six Degrees of Freedom
,”
Aircr. Eng. Aerosp. Technol.
,
38
(
4
), pp.
30
35
.
2.
Di Gegorio
,
R.
,
2001
, “
Kinematics of the Translational 3-URC Mechanism
,”
Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
(Cat. No. 01TH8556),
Como, Italy
, Vol.
1
, pp.
147
152
.
3.
Lu
,
Y.
, and
Hu
,
B.
,
2006
, “
Analysis of Kinematics and Solution of Active/Constrained Forces of Asymmetric 2UPU + X Parallel Manipulators
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
220
(
12
), pp.
1819
1830
.
4.
Ji
,
P.
, and
Wu
,
H.-T.
,
2003
, “
Kinematics Analysis of an Offset 3-UPU Translational Parallel Robotic Manipulator
,”
Rob. Auton. Syst.
,
42
(
2
), pp.
117
123
.
5.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
J. Mech. Trans. Autom. Des.
,
105
(
4
), pp.
705
712
.
6.
Varedi
,
S. M.
,
Daniali
,
H. M.
, and
Ganji
,
D. D.
,
2009
, “
Kinematics of an Offset 3-UPU Translational Parallel Manipulator by the Homotopy Continuation Method
,”
Nonlinear Anal.: Real World Appl.
,
10
(
3
), pp.
1767
1774
.
7.
Hu
,
B.
, and
Lu
,
Y.
,
2011
, “
Solving Stiffness and Deformation of a 3-UPU Parallel Manipulator With One Translation and Two Rotations
,”
Robotica
,
29
(
6
), pp.
815
822
.
8.
Huang
,
T.
,
Li
,
Z. X.
,
Li
,
M.
,
Chetwynd
,
D. G.
, and
Gosselin
,
C. M.
,
2004
, “
Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
449
455
.
9.
Huang
,
T.
,
Li
,
M.
,
Zhao
,
X. M.
,
Mei
,
J. P.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
,
2005
, “
Conceptual Design and Dimensional Synthesis for a 3-DOF Module of the Tri-Variant-A Novel 5-DOF Reconfigurable Hybrid Robot
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
449
456
.
10.
Li
,
X.
,
Qu
,
H.
, and
Guo
,
S.
,
2022
, “
Kinematic Performance and Static Analysis of a Two-Degree-of-Freedom 3-RPS/US Parallel Manipulator With Two Passive Limbs
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021014
.
11.
Tian
,
H.
,
Wang
,
C.
,
Ma
,
H.
, and
Xia
,
J.
,
2022
, “
Kinematic Analysis and Workspace Investigation of Novel 3-RPS/(H) Metamorphic Parallel Mechanism
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041008
.
12.
Lin
,
Z.
,
Xu
,
L.
,
Ding
,
Y.
, and
Zhu
,
X.
,
2022
, “
A 2R1T Redundantly Actuated Parallel Manipulator With an Offset Mobile Platform and Fixed Linear Actuators
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041016
.
13.
Wang
,
L.
,
Fang
,
Y.
, and
Zhang
,
D.
,
2023
, “
Design of 4-DOF Hybrid Parallel Robots With an Integrated Three-Fingered Robot End Effector
,”
Mech. Mach. Theory
,
189
, p.
105443
.
14.
Liu
,
K.
,
Chen
,
W.
,
Yang
,
W.
,
Jiao
,
Z.
, and
Yu
,
Y.
,
2023
, “
Review of the Research Progress in Soft Robots
,”
Appl. Sci.
,
13
(
1
), p.
120
.
15.
Niu
,
S.
,
Luo
,
Y.
,
Shen
,
Y.
, and
Kim
,
K. J.
,
2015
, “
Enabling Earthworm-Like Soft Robot Development Using Bioinspired IPMC-Scissor Lift Actuation Structures: Design, Locomotion Simulation and Experimental Validation
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Zhuhai, China
, pp.
499
504
.
16.
Ito
,
K.
,
Homma
,
Y.
, and
Rossiter
,
J.
,
2020
, “
The Soft Multi-legged Robot Inspired by Octopus: Climbing Various Columnar Objects
,”
Adv. Rob.
,
34
(
17
), pp.
1096
1109
.
17.
Jiang
,
F.
,
Zhang
,
Z.
,
Wang
,
X.
,
Cheng
,
G.
,
Zhang
,
Z.
, and
Ding
,
J.
,
2020
, “
Pneumatically Actuated Self-Healing Bionic Crawling Soft Robot
,”
J. Intell. Rob. Syst.
,
100
(
2
), pp.
445
454
.
18.
Hawkes
,
E. W.
,
Blumenschein
,
L. H.
,
Greer
,
J. D.
, and
Okamura
,
A. M.
,
2017
, “
A Soft Robot That Navigates Its Environment Through Growth
,”
Sci. Rob.
,
2
(
8
), p.
eaan3028
.
19.
Yan
,
J.
,
Xu
,
B.
,
Zhang
,
X.
, and
Zhao
,
J.
,
2017
, “
Design and Test of a New Spiral Driven Pure Torsional Soft Actuator
,”
Intelligent Robotics and Applications. 10th International Conference, ICIRA, PTI
,
Wuhan, China
.
20.
Dylan
,
D.
,
Saurabh
,
J.
,
David
,
S.
,
Christian
,
C.
, and
Tolley
,
M. T.
,
2021
, “
Electronics-Free Pneumatic Circuits for Controlling Soft-Legged Robots
,”
Sci. Rob
,
6
(
51
), p.
eaay2627
.
21.
Karimi
,
M. A.
,
Alizadehyazdi
,
V.
,
Jaeger
,
H. M.
, and
Spenko
,
M.
,
2022
, “
A Self-Reconfigurable Variable-Stiffness Soft Robot Based on Boundary-Constrained Modular Units
,”
IEEE Trans. Rob.
,
38
(
2
), pp.
810
821
.
22.
Liu
,
S.
,
Mei
,
J.
,
Wang
,
P.
, and
Guo
,
F.
,
2023
, “
Optimal Design of a Coupling-Input Cable-Driven Parallel Robot With Passive Limbs Based on Force Space Analysis
,”
Mech. Mach. Theory
,
184
, p.
105296
.
23.
Li
,
Y.
,
Zi
,
B.
,
Sun
,
Z.
,
Zhou
,
B.
, and
Ding
,
H. -F
,
2023
, “
Implementation of Cable-Driven Waist Rehabilitation Robotic System Using Fractional-Order Controller
,”
Mech. Mach. Theory
,
190
, p.
105460
.
24.
Niyetkaliyev
,
A. S.
,
Sariyildiz
,
E.
, and
Alici
,
G.
,
2020
, “
Kinematic Modeling and Analysis of a Novel Bio-Inspired and Cable-Driven Hybrid Shoulder Mechanism
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011008
.
25.
Zi
,
B.
,
Sun
,
H.
, and
Zhang
,
D.
,
2017
, “
Design, Analysis and Control of a Winding Hybrid-Driven Cable Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
48
, pp.
196
208
.
26.
Horoub
,
M. M.
,
Hassan
,
M.
, and
Hawwa
,
M. A.
,
2018
, “
Workspace Analysis of a Gough-Stewart Type Cable Marine Platform Subjected to Harmonic Water Waves
,”
Mech. Mach. Theory
,
120
, pp.
314
325
.
27.
Zhang
,
Z.
,
Yang
,
G.
, and
Yeo
,
S. H.
,
2011
, “
Inverse Kinematics of Modular Cable-Driven Snake-Like Robots With Flexible Backbones
,”
IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM)
,
Qingdao, China
, pp.
41
46
.
28.
Yang
,
K.
,
Chen
,
C.
,
Ding
,
Y.
,
Wu
,
K.
,
Zhang
,
G.
, and
Yang
,
G.
,
2023
, “
Stiffness Modeling and Distribution of a Modular Cable-Driven Human-Like Robotic Arm
,”
Mech. Mach. Theory
,
180
, p.
105150
.
29.
Kim
,
Y. J.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
.
30.
Xu
,
P.
,
Li
,
J.
,
Li
,
S.
,
Xia
,
D.
,
Zeng
,
Z.
,
Yang
,
N.
, and
Xie
,
L.
,
2021
, “
Design and Evaluation of a Parallel Cable-Driven Shoulder Mechanism With Series Springs
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031012
.
31.
Jung
,
K.
,
Koo
,
J. C.
,
Lee
,
Y. K.
, and
Choi
,
H. R.
,
2007
, “
Artificial Annelid Robot Driven by Soft Actuators
,”
Bioinsp. Biomim.
,
2
(
2
), pp.
S42
S49
.
32.
Li
,
C.
,
Xie
,
Y. H.
,
Li
,
G. R.
,
Yang
,
X. X.
,
Jin
,
Y. B.
, and
Li
,
T. F.
,
2015
, “
Electromechanical Behavior of Fiber-Reinforced Dielectric Elastomer Membrane
,”
Int. J. Smart Nano Mater.
,
6
(
2
), pp.
124
134
.
33.
Koh
,
J. S.
, and
Cho
,
K. J.
,
2010
, “
Omegabot: Crawling Robot Inspired by Ascotis Selenaria
,”
IEEE International Conference on Robotics and Automation
,
Anchorage, AK
, pp.
109
114
.
34.
Menciassi
,
A.
,
Gorini
,
S.
,
Pernorio
,
G.
, and
Dario
,
P.
,
2004
, “
A SMA Actuated Artificial Earthworm
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA ’04)
,
New Orleans, LA,
Vol.
4
, pp.
3282
3287
.
35.
Horchler
,
A. D.
,
Kandhari
,
A.
,
Daltorio
,
K. A.
,
Moses
,
K. C.
,
Andersen
,
K. B.
,
Bunnelle
,
H.
,
Kershaw
,
J.
, et al
,
2015
, “Worm-Like Robotic Locomotion With a Compliant Modular Mesh,”
Biomimetic and Biohybrid Systems. Living Machines. Lecture Notes in Computer Science
,
S.
Wilson
,
P.
Verschure
,
A.
Mura
, and
T.
Prescott
, eds., Vol.
9222
,
Springer
,
Cham
.
36.
Luo
,
M.
,
Yan
,
R.
,
Wan
,
Z.
,
Qin
,
Y.
,
Santoso
,
J.
,
Skorina
,
E. H.
, and
Onal
,
C. D.
,
2018
, “
OriSnake: Design, Fabrication, and Experimental Analysis of a 3-D Origami Snake Robot
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1993
1999
.
You do not currently have access to this content.