Graphical Abstract Figure

Overview of numerical models for optimization of rolling motion

Graphical Abstract Figure

Overview of numerical models for optimization of rolling motion

Close modal

Abstract

The snake-like robot can travel over environments that are difficult for wheeled mobility mechanisms. However, undulating locomotion requires high power consumption. We propose an efficient method that integrates the center-of-gravity (COG) shifting for the navigation of the robot to address the aforementioned problem. The proposed method allows the use of rolling motion with high traveling efficiency on level ground and undulating locomotion in water as well as other uneven surfaces. In this paper, we present a design method using the multi-objective genetic algorithm in terms of the traveling velocity of the robot, load, and energy consumption of the servomotor. The results of the motion design show that the COG shift motion mode was obtained as the optimal solution. It was observed that the COG shift motion with the designed parameters can achieve high traveling efficiency compared to that with conventional undulating locomotion by experiment.

References

1.
Liljebäck
,
P.
,
Pettersen
,
K. Y.
,
Stavdahl
,
Ø.
, and
Gravdahl
,
J. T.
,
2013
,
Snake Robots: Modelling, Mechatronics, and Control
(
Advances in Industrial Control
),
Springer
,
London
.
2.
Zang
,
X.
,
Liu
,
Y.
,
Lin
,
Z.
,
Zhang
,
C.
, and
Iqbal
,
S.
,
2016
, “
Two Multi-Linked Rescue Robots: Design, Construction and Field Tests
,”
J. Adv. Mech. Des., Syst. Manuf.
,
10
(
6
), p.
JAMDSM0089
.
3.
Wakimoto
,
S.
,
Nakajima
,
J.
,
Takata
,
M.
,
Kanda
,
T.
, and
Suzumori
,
K.
,
2003
, “
A Micro Snake-Like Robot for Small Pipe Inspection
,”
2003 International Symposium on Micromechatronics and Human Science
,
Nagoya, Japan
,
Oct. 19–22
, pp.
303
308
.
4.
Fjerdingen
,
S.
,
Liljebäck
,
P.
, and
Transeth
,
A.
,
2009
, “
A Snake-Like Robot for Internal Inspection of Complex Pipe Structures (PIKo)
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, pp.
5665
5671
.
5.
Ismail
,
I.
,
Anuar
,
A.
,
Sahari
,
K.
,
Baharuddin
,
M.
,
Jalal
,
M.
, and
Saad
,
J.
,
2012
, “
Development of In-Pipe Inspection Robot: A Review
,”
2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology
,
Kuala Lumpur, Malaysia
,
Oct. 6–9
, pp.
310
315
.
6.
Enner
,
F.
,
Rollinson
,
D.
, and
Choset
,
H.
,
2013
, “
Motion Estimation of Snake Robots in Straight Pipes
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
.
7.
Matsumoto
,
N.
,
Tanaka
,
M.
,
Nakajima
,
M.
,
Fujita
,
M.
, and
Tadakuma
,
K.
,
2020
, “
Development of a Folding Arm on an Articulated Mobile Robot for Plant Disaster Prevention
,”
Adv. Rob.
,
34
(
2
), pp.
89
103
.
8.
Hou
,
X.
,
Shi
,
Y.
,
Li
,
L.
,
Tian
,
Y.
,
Su
,
Y.
,
Ding
,
T.
, and
Deng
,
Z.
,
2020
, “
Revealing the Mechanical Characteristics Via Kinematic Wave Model for Snake-Like Robot Executing Exploration of Lunar Craters
,”
IEEE Access
,
8
, pp.
38368
38379
.
9.
Gray
,
J.
,
1946
, “
The Mechanism of Locomotion in Snakes
,”
J. Exp. Biol.
,
23
(
2
), pp.
101
120
.
10.
Hirose
,
S.
,
Cave
,
P.
, and
Goulden
,
C.
,
1993
,
Biologically Inspired Robots: Snake-Like Locomotors and Manipulators
,
Oxford University Press
,
Oxford
.
11.
Ute
,
J.
, and
Ono
,
K.
,
2002
, “
Fast and Efficient Locomotion of a Snake Robot Based on Self-Excitation Principle
,”
7th International Workshop on Advanced Motion Control
,
Maribor, Slovenia
,
July 3–5
, pp.
532
539
.
12.
Kakogawa
,
A.
,
Kawabata
,
T.
, and
Ma
,
S.
,
2021
, “
Plate-Springed Parallel Elastic Actuator for Efficient Snake Robot Movement
,”
IEEE/ASME Tran. Mechatron.
,
26
(
6
), pp.
3051
3063
.
13.
Sato
,
M.
,
Fukaya
,
M.
, and
Iwasaki
,
T.
,
2002
, “
Serpentine Locomotion With Robotic Snakes
,”
IEEE Control Syst. Mag.
,
22
(
1
), pp.
64
81
.
14.
Ijspeert
,
A. J.
, and
Crespi
,
A.
,
2007
, “
Online Trajectory Generation in an Amphibious Snake Robot Using a Lamprey-Like Central Pattern Generator Model
,”
2007 IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, pp.
262
268
.
15.
Kelasidi
,
E.
,
Liljebäck
,
P.
,
Pettersen
,
K. Y.
, and
Gravdahl
,
J. T.
,
2015
, “
Experimental Investigation of Efficient Locomotion of Underwater Snake Robots for Lateral Undulation and Eel-Like Motion Patterns
,”
Rob. Biomimet.
,
2
(
8
), pp.
1
27
.
16.
Yamano
,
A.
,
Shimizu
,
K.
,
Chiba
,
M.
, and
Ijima
,
H.
,
2021
, “
Fluid Force Identification Acting on Snake-Like Robots Swimming in Viscous Fluids
,”
J. Fluids Struct.
,
106
, p.
103351
.
17.
Kurokawa
,
H.
,
Kamimura
,
A.
,
Yoshida
,
E.
,
Tomita
,
K.
,
Murata
,
S.
, and
Kokaji
,
S.
,
2002
, “
Self-Reconfigurable Modular Robot (M-TRAN) and Its Motion Design
,”
7th International Conference on Control, Automation, Robotics and Vision
,
Singapore
,
Dec. 2–5
, pp.
51
56
.
18.
Zhao
,
J.
,
Cui
,
X.
,
Zhu
,
Y.
, and
Tang
,
S.
,
2011
, “
A New Self-Reconfigurable Modular Robotic System UBot: Multi-Mode Locomotion and Self-Reconfiguration
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
1020
1025
.
19.
Wang
,
X.
,
Jin
,
H.
,
Zhu
,
Y.
,
Chen
,
B.
,
Bie
,
D.
,
Zhang
,
Y.
, and
Zhao
,
J.
,
2016
, “
Serpenoid Polygonal Rolling for Chain-Type Modular Robots: A Study of Modeling, Pattern Switching and Application
,”
Rob. Comput.-Integr. Manuf.
,
39
, pp.
56
67
.
20.
Salagame
,
A.
,
Bhattachan
,
N.
,
Caetano
,
A.
,
McCarthy
,
I.
,
Noyes
,
H.
,
Petersen
,
B.
,
Qiu
,
A.
, et al.,
2023
, “How Strong a Kick Should Be to Topple Northeastern’s Tumbling Robot?” arXiv, cs.RO.
21.
Tesch
,
M.
,
Lipkin
,
K.
,
Brown
,
I.
,
Hatton
,
R.
,
Peck
,
A.
,
Rembisz
,
J.
, and
Choset
,
H.
,
2009
, “
Parameterized and Scripted Gaits for Modular Snake Robots
,”
Adv. Rob.
,
23
(
9
), pp.
1131
1158
.
22.
Tesch
,
M.
,
Schneider
,
J.
, and
Choset
,
H.
,
2013
, “
Expensive Multiobjective Optimization for Robotics
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
973
980
.
23.
Hasanzadeh
,
S.
, and
Tootoonchi
,
A.
,
2010
, “
Ground Adaptive and Optimized Locomotion of Snake Robot Moving With a Novel Gait
,”
Auton. Rob.
,
28
(
4
), pp.
457
470
.
24.
Crespi
,
A.
, and
Ijspeert
,
A.
,
2008
, “
Online Optimization of Swimming and Crawling in an Amphibious Snake Robot
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
75
87
.
25.
Tesch
,
M.
,
Schneider
,
J.
, and
Choset
,
H.
,
2011
, “
Using Response Surfaces and Expected Improvement to Optimize Snake Robot Gait Parameters
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1069
1074
.
26.
Kelasidi
,
E.
, and
Pettersen
,
K. Y.
,
2015
, “
Energy Efficiency of Underwater Snake Robot Locomotion
,”
23rd Mediterranean Conference on Control and Automation
,
Torremolinos, Spain
,
June 16–19
, pp.
1124
1131
.
27.
Kelasidi
,
E.
,
Jesmani
,
M.
, and
Pettersen
,
K.
,
2016
, “
Multi-objective Optimization for Efficient Motion of Underwater Snake Robots
,”
Artif. Life Rob.
,
21
(
4
), pp.
411
422
.
28.
Borenstein
,
J.
,
Hansen
,
M.
, and
Borrell
,
A.
,
2007
, “
The OmniTread OT-4 Serpentine Robot–Design and Performance
,”
J. Field Rob.
,
24
(
7
), pp.
601
621
.
29.
Takemori
,
T.
,
Tanaka
,
M.
, and
Matsuno
,
F.
,
2016
, “
Gait Design of a Snake Robot by Connecting Simple Shapes
,”
2016 IEEE International Symposium on Safety, Security, and Rescue Robotics
,
Lausanne, Switzerland
,
Oct. 23–27
, pp.
189
194
.
30.
Takemori
,
T.
,
Tanaka
,
M.
, and
Matsuno
,
F.
,
2021
, “
Hoop-Passing Motion for a Snake Robot to Realize Motion Transition Across Different Environments
,”
IEEE Trans. Rob.
,
37
(
5
), pp.
1696
1711
.
31.
Yamano
,
A.
,
Ikeda
,
Y.
,
Imai
,
K.
, and
Chiba
,
M.
,
2023
, “
Efficient Rolling Motion for Snake-Like Robots Utilizing Center of Gravity Shift
,”
Mechatronics
,
94
, p.
103024
.
32.
Halme
,
A.
,
Schonberg
,
T.
, and
Wang
,
Y.
,
1996
, “
Motion Control of a Spherical Mobile Robot
,”
4th IEEE International Workshop on Advanced Motion Control – AMC '96 - MIE
,
Mie, Japan
,
Mar. 18–21
, Vol. 1, pp.
259
264
.
33.
Reina
,
G.
,
Foglia
,
M.
,
Milella
,
A.
, and
Gentile
,
A.
,
2004
, “
Rough-terrain traversability for a cylindrical shaped mobile robot
,”
the IEEE International Conference on Mechatronics, 2004. ICM '04
,
Istanbul, Turkey
,
June 5
, pp.
148
153
.
34.
Sugiyama
,
Y.
, and
Hirai
,
S.
,
2006
, “
Crawling and Jumping by a Deformable Robot
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
603
620
.
35.
Wang
,
Y.
,
Wu
,
C.
,
Yu
,
L.
, and
Mei
,
Y.
,
2018
, “
Trajectory Planning of a Rolling Robot of Closed Five-Bow-Shaped-Bar Linkage
,”
Rob. Comput.-Integr. Manuf.
,
53
, pp.
81
92
.
36.
Wang
,
Y.
,
Wu
,
C.
,
Yu
,
L.
, and
Mei
,
Y.
,
2018
, “
Dynamics of a Rolling Robot of Closed Five-Arc-Shaped-Bar Linkage
,”
Mech. Mach. Theory
,
121
, pp.
75
91
.
37.
Astley
,
H.
,
Gong
,
C.
,
Dai
,
J.
,
Travers
,
M.
,
Serrano
,
M.
,
Vela
,
P.
,
Choset
,
H.
,
Mendelson III
,
J.
,
Hu
,
D.
, and
Goldman
,
D.
,
2015
, “
Modulation of Orthogonal Body Waves Enables High Maneuverability in Sidewinding Locomotion
,”
Proc. Natl. Acad. Sci.
,
112
(
19
), pp.
6200
6205
.
38.
Marvi
,
H.
,
Gong
,
C.
,
Gravish
,
N.
,
Astley
,
H.
,
Travers
,
M.
,
Hatton
,
R.
,
Mendelson III
,
J.
,
Choset
,
H.
,
Hu
,
D.
, and
Goldman
,
D.
,
2014
, “
Sidewinding With Minimal Slip Snake and Robot Ascent of Sandy Slopes
,”
Science
,
346
(
6206
), pp.
224
229
.
39.
Ariizumi
,
R.
, and
Matsuno
,
F.
,
2017
, “
Dynamic Analysis of Three Snake Robot Gaits
,”
IEEE Trans. Rob.
,
33
(
5
), pp.
1075
1087
.
40.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
41.
Miettinen
,
K.
,
1998
,
Nonlinear Multiobjective Optimization
,
Springer New York
,
New York
.
42.
Su
,
C.
, and
Tyen
,
W.
,
1997
, “
A Genetic Algorithm Approach Employing Floating Point Representation for Economic Dispatch of Electric Power
,”
The International Congress on Modelling and Simulation
,
Hobart, Tasmania
, Australia,
Dec. 8–11
, Vol. 204, pp.
1444
1449
.
43.
Varlashin
,
V.
, and
Shmakov
,
O.
,
2019
, “
Comparative Analysis of the Virtual and Physical Experiments With a Snake Robot’s Rectilinear Movement
,”
J. Phys.: Conf. Ser.
,
1326
, p.
012037
.
You do not currently have access to this content.