Abstract

This article follows our recent work on the computation of kinematic confidence regions from a given set of uncertain spatial displacements with specified confidence levels. Dual quaternion algebra is used to compute the mean displacement as well as relative displacements from the mean. In constructing a 6D confidence ellipsoid, however, we use dual Rodrigues parameters resulting from dual quaternions. The advantages of using dual quaternions and dual Rodrigues parameters are discussed in comparison with those of three translation parameters and three Euler angles, which were used for the development of the so-called rotational and translational confidence limit (RTCL) method. The set of six dual Rodrigues parameters are used to define a parametric space in which a 6×6 covariance matrix and a 6D confidence ellipsoid are obtained. An inverse operation is then applied to first obtain dual quaternions and then to recover the rotation matrix and translation vector for each point on the 6D ellipsoid. Through examples, we demonstrate the efficacy of our approach by comparing it with the RTCL method known in literature. Our findings indicate that our method, based on the dual Rodrigues formulation, yields more compact and effective swept volumes than the RTCL method, particularly in cases involving screw displacements.

References

1.
Stroom
,
J. C.
, and
Heijmen
,
B. J.
,
2002
, “
Geometrical Uncertainties, Radiotherapy Planning Margins, and the ICRU-62 Report
,”
Radiother. Oncol.
,
64
(
1
), pp.
75
83
.
2.
Langer
,
M. P.
,
Papiez
,
L.
,
Spirydovich
,
S.
, and
Thai
,
V.
,
2005
, “
The Need for Rotational Margins in Intensity-Modulated Radiotherapy and a New Method for Planning Target Volume Design
,”
Inter. J. Radiat. Oncol., Biol. Phys.
,
63
(
5
), pp.
1592
1603
.
3.
Remeijer
,
P.
,
Rasch
,
C.
,
Lebesque
,
J. V.
, and
van Herk
,
M.
,
2002
, “
Margins for Translational and Rotational Uncertainties: A Probability-Based Approach
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
53
(
2
), pp.
464
74
.
4.
Yu
,
Z.
,
Jeffrey Ge
,
Q.
,
Langer
,
M. P.
, and
Arbab
,
M.
,
2024
, “
On the Construction of Confidence Regions for Uncertain Planar Displacements
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081014
.
5.
Yu
,
Z.
,
Ge
,
Q. J.
,
Langer
,
M. P.
, and
Arbab
,
M.
,
2023
, “On the Construction of Kinematic Confidence Ellipsoids for Uncertain Spatial Displacements,”
Advances in Mechanism and Machine Science
,
T. Uhl, ed., Springer Nature Switzerland
,
Tokyo, Japan
, pp.
777
785
.
6.
Li
,
W.
,
Howison
,
T.
, and
Angeles
,
J.
,
2018
, “
On the Use of the Dual Euler–Rodrigues Parameters in the Numerical Solution of the Inverse-Displacement Problem
,”
Mech. Mach. Theory
,
125
, pp.
21
33
.
7.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
ASME J. Mech. Trans. Auto.
,
105
(
3
), pp.
460
467
.
8.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
MIT Press
,
Cambridge, MA
.
9.
Wang
,
K.
, and
Dai
,
J. S.
,
2023
, “
The Dual Euler-Rodrigues Formula in Various Mathematical Forms and Their Intrinsic Relations
,”
Mech. Mach. Theory
,
181
, p.
105184
.
10.
Bottema
,
O.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
, Vol.
24
,
Courier Corporation
,
North Chelmsford, MA
.
11.
Dai
,
J. S.
,
2006
, “
An Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
,
41
(
1
), pp.
41
52
.
12.
McCarthy
,
J. M.
,
1986
, “
Dual Orthogonal Matrices in Manipulator Kinematics
,”
Inter. J. Rob. Res.
,
5
(
2
), pp.
45
51
.
13.
Purwar
,
A.
, and
Ge
,
Q. J.
,
2005
, “
On the Effect of Dual Weights in Computer Aided Design of Rational Motions
,”
ASME J. Mech. Des.
,
127
(
5
), p.
967
.
14.
Condurache
,
D.
, and
Burlacu
,
A.
,
2014
, “Recovering Dual Euler Parameters From Feature-Based Representation of Motion,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Husty
, eds.,
Springer
,
New York
, pp.
295
305
.
15.
Karakılıç
,
İ.
,
2010
, “
The Dual Rodrigues Parameters
,”
IJEAS
,
2
(
2
), pp.
23
32
.
16.
Gürsoy
,
A. E.
, and
Karakılıç
,
İ.
,
2011
, “
Expression of Dual Euler Parameters Using the Dual Rodrigues Parameters and Their Application to the Screw Transformation
,”
Math. Comput. Appl.
,
16
(
3
), pp.
680
689
.
17.
Eberharter
,
J. K.
, and
Ravani
,
B.
,
2004
, “
Local Metrics for Rigid Body Displacements
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
805
812
.
18.
Wilson
,
E. B.
, and
Hilferty
,
M. M.
,
1931
, “
The Distribution of Chi-square
,”
Proc. Natl. Acad. Sci. USA
,
17
(
12
), pp.
684
688
.
19.
Ge
,
Q. J.
,
Yu
,
Z.
,
Arbab
,
M.
, and
Langer
,
M. P.
,
2024
, “
On the Computation of Mean and Variance of Spatial Displacements
,”
ASME J. Mech. Rob.
,
16
(
1
), p.
011006
.
You do not currently have access to this content.