Abstract

3-RPS/(H) Metamorphic parallel mechanism based on conventional mechanisms is proposed in this study. In contrast to the 3-RPS mechanism, the 3-RPS/(H) mechanism comprises a novel intermediate metamorphic limb. The different constraints provided by the intermediate metamorphic limb and locking device enhance the dexterity of the metamorphic parallel mechanism. The configurations of the 3-RPS/(H) metamorphic parallel mechanism are analyzed and their degrees-of-freedom are obtained. Additionally, an inverse kinematic analysis of the mechanism is performed, and its workspace is compared with that of a conventional 3-RPS parallel mechanism with similar parameters. The results demonstrate that the 3-RPS/(H) metamorphic parallel mechanism exhibits better dexterity than that of the 3-RPS mechanism. Moreover, the effects of different structural parameters of the metamorphic parallel mechanism on the workspace are analyzed. Finally, the singularity analysis of the mechanism is performed. The results provide a theoretical basis for the design and optimization of mechanical legs.

References

1.
Deng
,
H.
,
Xin
,
G.
,
Zhong
,
G.
, and
Mistry
,
M.
,
2017
, “
Gait and Trajectory Rolling Planning and Control of Hexapod Robots for Disaster Rescue Applications
,”
Rob. Auton. Syst.
,
95
(
9
), pp.
13
24
.
2.
Mertyüz
,
İ
,
Tanyıldızı
,
A. K.
,
Taşar
,
B.
,
Tatar
,
A. B.
, and
Yakut
,
O.
,
2020
, “
FUHAR: A Transformable Wheel-Legged Hybrid Mobile Robot
,”
Rob. Auton. Syst.
,
133
(
11
), p.
103627
.
3.
Zhang
,
D.
, and
Gao
,
Z.
,
2011
, “
Hybrid Head Mechanism of the Groundhog-Like Mine Rescue Robot
,”
Rob. Comput. Integr. Manuf.
,
27
(
2
), pp.
460
470
.
4.
Li
,
L.
,
Fang
,
Y.
,
Guo
,
S.
,
Qu
,
H.
, and
Wang
,
L.
,
2020
, “
Type Synthesis of a Class of Novel 3-DOF Single-Loop Parallel leg Mechanisms for Walking Robots
,”
Mech. Mach. Theory
,
145
(
3
), p.
103695
.
5.
Sun
,
T.
,
Song
,
Y.
,
Gao
,
H.
, and
Qi
,
Y.
,
2015
, “
Topology Synthesis of a 1-Translational and 3-Rotational Parallel Manipulator With an Articulated Traveling Plate
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031015
.
6.
Song
,
Y.
,
Gao
,
H.
,
Sun
,
T.
,
Dong
,
G.
,
Lian
,
B.
, and
Qi
,
Y.
,
2014
, “
Kinematic Analysis and Optimal Design of a Novel 1T3R Parallel Manipulator With an Articulated Travelling Plate
,”
Rob. Comput. Integr. Manuf.
,
30
(
5
), pp.
508
516
.
7.
Russo
,
M.
,
Herrero
,
S.
,
Altuzarra
,
O.
, and
Ceccarelli
,
M.
,
2018
, “
Kinematic Analysis and Multi-Objective Optimization of a 3-UPR Parallel Mechanism for a Robotic Leg
,”
Mech. Mach. Theory
,
120
(
2
), pp.
192
202
.
8.
Fajardo-Pruna
,
M.
,
López-Estrada
,
L.
,
Pérez
,
H.
,
Diez
,
E.
, and
Vizán
,
A.
,
2019
, “
Analysis of a Single-Edge Micro Cutting Process in a Hybrid Parallel-Serial Machine Tool
,”
Int. J. Mech. Sci.
,
151
(
2
), pp.
222
235
.
9.
Tian
,
X.
,
Gao
,
F.
,
Qi
,
C.
,
Qu
,
X.
, and
Xiao
,
N.
,
2016
, “
External Disturbance Identification of a Quadruped Robot With Parallel–Serial leg Structure
,”
Int. J. Mech. Mater. Des.
,
12
(
1
), pp.
109
120
.
10.
Li
,
Y.
,
Ge
,
S.
, and
Zhu
,
H.
,
2010
, “
Mobile Platform of Rocker-Type Coal Mine Rescue Robot
,”
Min. Sci. Technol.
,
20
(
3
), pp.
466
471
.
11.
Dai
,
J.
, and
Rees
,
J. J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
12.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2016
, “
Mobility Variation of a Family of Metamorphic Parallel Mechanisms With Reconfigurable Hybrid Limbs
,”
Rob. Comput. Integr. Manuf.
,
41
(
10
), pp.
145
162
.
13.
Wang
,
R.
,
Liao
,
Y.
,
Dai
,
J.
,
Chen
,
H.
, and
Cai
,
G.
,
2019
, “
The Isomorphic Design and Analysis of a Novel Plane-Space Polyhedral Metamorphic Mechanism
,”
Mech. Mach. Theory
,
131
(
1
), pp.
152
171
.
14.
Jia
,
G.
,
Li
,
B.
,
Huang
,
H.
, and
Zhang
,
D.
,
2020
, “
Type Synthesis of Metamorphic Mechanisms With Scissor-Like Linkage Based on Different Kinds of Connecting Pairs
,”
Mech. Mach. Theory
,
151
(
9
), p.
103848
.
15.
Zhang
,
L.
,
Wang
,
D.
, and
Dai
,
J.
,
2008
, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072303
.
16.
Li
,
Q.
,
Chen
,
Q.
,
Wu
,
C.
, and
Hu
,
X.
,
2009
, “
4-xPxRxRxRyRN Parallel Mechanism With Variable Mobility
,”
Chin. J. Mech. Eng.
,
45
(
1
), pp.
83
87
.
17.
Chablat
,
D.
,
Kong
,
X.
, and
Zhang
,
C.
,
2018
, “
Kinematics, Workspace, and Singularity Analysis of a Parallel Robot With Five Operation Modes
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
035001
.
18.
Zhao
,
C.
,
Guo
,
H.
,
Liu
,
R.
,
Deng
,
Z.
, and
Li
,
B.
,
2018
, “
Design and Kinematic Analysis of a 3RRlS Metamorphic Parallel Mechanism for Large-Scale Reconfigurable Space Multifingered Hand
,”
ASME J. Mech. Rob.
,
10
(
8
), p.
041012
.
19.
Tian
,
H.
,
Ma
,
H.
, and
Ma
,
K.
,
2018
, “
Method for Configuration Synthesis of Metamorphic Mechanisms Based on Functional Analyses
,”
Mech. Mach. Theory
,
123
(
5
), pp.
27
39
.
20.
Zhang
,
K.
,
Dai
,
J.
, and
Fang
,
Y.
,
2013
, “
Geometric Constraint and Mobility Variation of two3svpsv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.
21.
Gan
,
D.
,
Dai
,
J.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031004
.
22.
Gan
,
D.
,
Dai
,
J.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Joint Force Decomposition and Variation in Unified Inverse Dynamics Analysis of a Metamorphic Parallel Mechanism
,”
Meccanica
,
51
(
7
), pp.
1583
1593
.
23.
Gan
,
D.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Unified Kinematics and Optimal Design of a 3rRPS Metamorphic Parallel Mechanism With a Reconfigurable Revolute Joint
,”
Mech. Mach. Theory
,
96
(
2
), pp.
239
254
.
24.
Palpacelli
,
M. C.
,
Carbonari
,
L.
, and
Palmieri
,
G.
,
2016
, “
Details on the Design of a Lockable Spherical Joint for Robotic Applications
,”
J. Intell. Rob. Syst.
,
81
(
2
), pp.
169
179
.
25.
Zhang
,
W.
,
Zhang
,
S.
,
Ceccarelli
,
M.
, and
Shi
,
D.
,
2016
, “Design and Kinematic Analysis of a Novel Metamorphic Mechanism for Lower Limb Rehabilitation,”
Advances in Reconfigurable Mechanisms and Robots II, Mechanisms and Machine Science
,
Springer
,
Cham
, pp.
545
558
.
26.
Chang
,
B.
,
Jin
,
G.
, and
Wang
,
Y.
,
2013
, “
Parallel Spherical Metamorphic Mechanism and Its Complete Jacobian Matrix
,”
Trans. Chin. Soc. Agric. Mach.
,
44
(
10
), pp.
260
265
.
27.
Tian
,
H.
,
Ma
,
H.
,
Xia
,
J.
,
Ma
,
K.
, and
Li
,
Z.
,
2019
, “
Stiffness Analysis of a Metamorphic Parallel Mechanism With Three Configurations
,”
Mech. Mach. Theory
,
142
(
12
), pp.
1
15
.
28.
Jin
,
Y.
,
Chen
,
I.
, and
Yang
,
G.
,
2011
, “
Workspace Evaluation of Manipulators Through Finite-Partition of SE(3)
,”
Rob. Comput. Integr. Manuf.
,
27
(
4
), pp.
850
859
.
29.
Zhang
,
C.
, and
Zhang
,
L.
,
2013
, “
Kinematics Analysis and Workspace Investigation of a Novel 2-DOF Parallel Manipulator Applied in Vehicle Driving Simulator
,”
Rob. Comput. Integr. Manuf.
,
29
(
4
), pp.
113
120
.
30.
Chaudhury
,
A. N.
, and
Ghosal
,
A.
,
2017
, “
Optimum Design of Multi-degree-of-Freedom Closed-Loop Mechanisms and Parallel Manipulators for a Prescribed Workspace Using Monte Carlo Method
,”
Mech. Mach. Theory
,
118
(
12
), pp.
115
138
.
31.
Li
,
T.
,
Jiang
,
J.
, and
Deng
,
H.
,
2017
, “
Analysis of Structural Characteristics and Mobility of Planar Generalized Mechanisms
,”
Iran. J. Sci. Technol. - Trans. Mech. Eng.
,
41
(
1
), pp.
25
34
.
32.
Sun
,
T.
, and
Huo
,
X.
,
2018
, “
Type Synthesis of 1T2R Parallel Mechanisms With Parasitic Motions
,”
Mech. Mach. Theory
,
128
(
10
), pp.
412
428
.
33.
Schadlbauer
,
J.
,
Walter
,
D. R.
, and
Husty
,
M. L.
,
2014
, “
The 3-RPS Parallel Manipulator From an Algebraic Viewpoint
,”
Mech. Mach. Theory
,
75
(
5
), pp.
161
176
.
34.
Kong
,
X.
, and
Huang
,
Z.
,
1999
, “
Inverse Displacement Analysis of 3-RPS Regional Parallel Manipulators
,”
Mech. Sci. Technol.
,
18
(
3
), pp.
424
426
.
35.
Tian
,
H.
,
Ma
,
H.
, and
Wei
,
J.
,
2013
, “
Workspace and Structural Parameters Analysis for the Manipulator of a Serial Robot
,”
Trans. Chin. Soc. Agric. Mach.
,
44
(
4
), pp.
196
201
.
36.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
You do not currently have access to this content.