Abstract

This article presents a numerically stable algorithm for analytic inverse kinematics of 7-DoF S-R-S manipulators with joint limit avoidance. The arm angle is used to represent the self-motion manifold within a global arm configuration. The joint limits are analytically mapped to the arm angle space for joint limit avoidance. To profile the relation between the joint angle and arm angle, it is critical to characterize the singular arm angle for each joint. In the-state-of-the art methods, the existence of the singular arm angle is triggered by comparing a discriminant with zero given a threshold. This leads to numerical issues since the threshold is inconsistent among different target poses, leading to incorrect range of the arm angle. These issues are overcome by associating indeterminate joint angles of tangent joints with angles of 0 or ±π of cosine joints, rather than using an independent threshold for each joint. The closed-form algorithm in c++ code to perform numerically stable inverse kinematics of 7-DoF S-R-S manipulators with global arm configuration control and joint limit avoidance is also given.

References

1.
Hollerbach
,
J. M.
,
1985
, “
Optimum Kinematic Design for a Seven Degree of Freedom Manipulator
,” Second International Symposium on Robotics Research, pp.
215
222
.
2.
Karpińska
,
J.
, and
Tchoń
,
K.
,
2012
, “
Performance-Oriented Design of Inverse Kinematics Algorithms: Extended Jacobian Approximation of the Jacobian Pseudo-Inverse
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021008
.
3.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2019
, “
A Technique Based on Adaptive Extended Jacobians for Improving the Robustness of the Inverse Numerical Kinematics of Redundant Robots
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020913
.
4.
Wampler
,
C. W.
,
1986
, “
Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods
,”
IEEE Trans. Syst. Man Cybern.
,
16
(
1
), pp.
93
101
.
5.
Seraji
,
H.
,
1989
, “
Configuration Control of Redundant Manipulators: Theory and Implementation
,”
IEEE Trans. Robot. Autom.
,
5
(
4
), pp.
472
490
.
6.
Sung
,
Y. W.
,
Cho
,
D. K.
, and
Chung
,
M. J.
,
1996
, “
A Constrained Optimization Approach to Resolving Manipulator Redundancy
,”
J. Robot. Syst.
,
13
(
5
), pp.
275
288
.
7.
Nenchev
,
D. N.
,
1989
, “
Redundancy Resolution Through Local Optimization: A Review
,”
J. Robot. Syst.
,
6
(
6
), pp.
769
798
.
8.
Chang
,
P.
,
1987
, “
A Closed-Form Solution for Inverse Kinematics of Robot Manipulators With Redundancy
,”
IEEE J. Rob. Auto.
,
3
(
5
), pp.
393
403
.
9.
De Luca
,
A.
, and
Oriolo
,
G.
,
1990
, “
The Reduced Gradient Method for Solving Redundancy in Robot Arms
,”
IFAC Proceedings Volumes
,
23
(
8, Part 5
), pp.
133
138
. 11th IFAC World Congress on Automatic Control, Tallinn, 1990 - Volume 5, Tallinn, Finland.
10.
Nokleby
,
S. B.
, and
Podhorodeski
,
R. P.
,
2004
, “
Identifying Multi-dof-Loss Velocity Degeneracies in Kinematically-Redundant Manipulators
,”
Mech. Mach. Theory
,
39
(
2
), pp.
201
213
.
11.
Fratu
,
A.
,
Vermeiren
,
L.
, and
Dequidt
,
A.
,
2010
, “
Using the Redundant Inverse Kinematics System for Collision Avoidance
,”
2010 3rd International Symposium on Electrical and Electronics Engineering (ISEEE)
,
Galati, Romania
,
Sept. 16–18
, pp.
88
93
.
12.
Podhorodeski
,
R. P.
,
Goldenberg
,
A. A.
, and
Fenton
,
R. G.
,
1991
, “
Resolving Redundant Manipulator Joint Rates and Identifying Special Arm Configurations Using Jacobian Null-Space Bases
,”
IEEE Trans. Robot. Autom.
,
7
(
5
), pp.
607
618
.
13.
Zhou
,
Z. L.
, and
Nguyen
,
C. C.
,
1997
, “
Joint Configuration Conservation and Joint Limit Avoidance of Redundant Manipulators
,”
Proceedings of International Conference on Robotics and Automation
,
Albuquerque, NM
,
Apr. 25
, Vol. 3, pp.
2421
2426
.
14.
Drexler
,
D. A.
,
2016
, “
Solution of the Closed-Loop Inverse Kinematics Algorithm Using the Crank-Nicolson Method
,”
2016 IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI)
,
Herlany, Slovakia
,
Jan. 21–23
, pp.
351
356
.
15.
Ozgoren
,
M. K.
,
2013
, “
Optimal Inverse Kinematic Solutions for Redundant Manipulators by Using Analytical Methods to Minimize Position and Velocity Measures
,”
J. Mech. Rob.
,
5
(
3
), p.
031009
.
16.
Balkan
,
T.
,
Özgören
,
M.
,
Sahir Arıkan
,
M.
, and
Baykurt
,
H.
,
2000
, “
A Method of Inverse Kinematics Solution Including Singular and Multiple Configurations for a Class of Robotic Manipulators
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1221
1237
.
17.
Wei
,
Y.
,
Jian
,
S.
,
He
,
S.
, and
Wang
,
Z.
,
2014
, “
General Approach for Inverse Kinematics of Nr Robots
,”
Mech. Mach. Theory
,
75
, pp.
97
106
.
18.
Ananthanarayanan
,
H.
, and
Ordóñez
,
R.
,
2015
, “
Real-Time Inverse Kinematics of (2n+1) Dof Hyper-Redundant Manipulator Arm Via a Combined Numerical and Analytical Approach
,”
Mech. Mach. Theory
,
91
, pp.
209
226
.
19.
Asfour
,
T.
, and
Dillmann
,
R.
,
2003
, “
Human-Like Motion of a Humanoid Robot Arm Based on a Closed-Form Solution of the Inverse Kinematics Problem
,”
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453)
,
Las Vegas, NV
,
Oct. 27–31
, Vol. 2, pp.
1407
1412
.
20.
Kim
,
H.
, and
Rosen
,
J.
,
2015
, “
Predicting Redundancy of a 7 Dof Upper Limb Exoskeleton Toward Improved Transparency Between Human and Robot
,”
J. Intell. Robot. Syst.
,
80
(
Suppl 1
), pp.
99
119
.
21.
Zaplana
,
I.
, and
Basanez
,
L.
,
2018
, “
A Novel Closed-Form Solution for the Inverse Kinematics of Redundant Manipulators Through Workspace Analysis
,”
Mech. Mach. Theory
,
121
, pp.
829
843
.
22.
Pfurner
,
M.
,
2016
, “
Closed Form Inverse Kinematics Solution for a Redundant Anthropomorphic Robot Arm
,”
Comput. Aided Geom. Des.
,
47
, pp.
163
171
. SI: New Developments Geometry.
23.
Lee
,
S.
, and
Bejczy
,
A. K.
,
1991
, “
Redundant Arm Kinematic Control Based on Parameterization
,”
Proceedings 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
Apr. 9–11
, Vol. 1, pp.
458
465
.
24.
Lynch
,
K.
, and
Park
,
F.
,
2017
,
Modern Robotics: Mechanics, Planning, and Control
,
Cambridge Univeristy Press
,
Cambridge, UK
.
25.
Craig
,
J.
,
2018
,
Introduction to Robotics: Mechanics and Control
, 4th ed.,
Pearson
,
London, UK
.
26.
Shimizu
,
M.
,
Kakuya
,
H.
,
Yoon
,
W.
,
Kitagaki
,
K.
, and
Kosuge
,
K.
,
2008
, “
Analytical Inverse Kinematic Computation for 7-dof Redundant Manipulators With Joint Limits and Its Application to Redundancy Resolution
,”
IEEE Trans. Robot.
,
24
(
5
), pp.
1131
1142
.
27.
Kreutz-Delgado
,
K.
,
Long
,
M.
, and
Seraji
,
H.
,
1992
, “
Kinematic Analysis of 7-dof Manipulators
,”
Int. J. Robot. Res.
,
11
(
5
), pp.
469
481
.
28.
Yan
,
L.
,
Mu
,
Z.
, and
Xu
,
W.
,
2014
, “
Analytical Inverse Kinematics of a Class of Redundant Manipulator Based on Dual Arm-Angle Parameterization
,”
2014 IEEE International Conference on Systems, Man and Cybernetics (SMC)
,
San Diego, CA
,
Oct. 5–8
, pp.
3744
3749
.
29.
Kuhlemann
,
I.
,
Schweikard
,
A.
,
Jauer
,
P.
, and
Ernst
,
F.
,
2016
, “
Robust Inverse Kinematics by Configuration Control for Redundant Manipulators With Seven Dof
,”
2016 2nd International Conference on Control, Automation and Robotics (ICCAR)
,
Hong Kong, China
,
Apr. 28–30
, pp.
49
55
.
30.
Faria
,
C.
,
Ferreira
,
F.
,
Erlhagen
,
W.
,
Monteiro
,
S.
, and
Bicho
,
E.
,
2018
, “
Position-Based Kinematics for 7-dof Serial Manipulators With Global Configuration Control, Joint Limit and Singularity Avoidance
,”
Mech. Mach. Theory
,
121
, pp.
317
334
.
31.
An
,
H. H.
,
Clement
,
W. I.
, and
Reed
,
B.
,
2014
, “
Analytical Inverse Kinematic Solution With Self-motion Constraint for the 7-dof Restore Robot Arm
,”
2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Besacon, France
,
July 8–11
, pp.
1325
1330
.
32.
Alassi
,
A.
,
Yilmaz
,
N.
,
Bazman
,
M.
,
Gur
,
B.
, and
Tumerdem
,
U.
,
2018
, “
Development and Kinematic Analysis of a Redundant, Modular and Backdrivable Laparoscopic Surgery Robot
,”
2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Auckland, New Zealand
,
July 9–12
, pp.
213
219
.
33.
Yilmaz
,
N.
,
Bazman
,
M.
,
Alassi
,
A.
,
Gur
,
B.
, and
Tumerdem
,
U.
,
2019
, “
6-Axis Hybrid Sensing and Estimation of Tip Forces/Torques on a Hyper-Redundant Robotic Surgical Instrument
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
, pp.
2990
2997
.
34.
Singh
,
G. K.
, and
Claassens
,
J.
,
2010
, “
An Analytical Solution for the Inverse Kinematics of a Redundant 7dof Manipulator With Link Offsets
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
2976
2982
.
35.
Chan
,
T. F
, and
Dubey
,
R. V.
,
1995
, “
A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators
,”
IEEE Trans. Robot. Autom.
,
11
(
2
), pp.
286
292
.
36.
Nelson
,
B.
, and
Khosla
,
P. K.
,
1993
, “
Increasing the Tracking Region of an Eye-in-Hand System by Singularity and Joint Limit Avoidance
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, Vol. 3, pp.
418
423
.
37.
Ahn
,
K.h.
, and
Chung
,
W. K.
,
2002
, “
Optimization With Joint Space Reduction and Extension Induced by Kinematic Limits for Redundant Manipulators
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292)
,
Washington, DC
,
May 11–15
, Vol. 3, pp.
2412
2417
.
38.
Atawnih
,
A.
,
Papageorgiou
,
D.
, and
Doulgeri
,
Z.
,
2016
, “
Kinematic Control of Redundant Robots with Guaranteed Joint Limit Avoidance
,”
Robot. Auton. Syst.
,
79
, pp.
122
131
.
39.
Tian
,
X.
,
Xu
,
Q.
, and
Zhan
,
Q.
,
2021
, “
An Analytical Inverse Kinematics Solution With Joint Limits Avoidance of 7-dof Anthropomorphic Manipulators Without Offset
,”
J. Franklin Inst.
,
358
(
2
), pp.
1252
1272
.
40.
Chawda
,
V.
, and
Niemeyer
,
G.
,
2017
, “
Toward Controlling a Kuka Lbr Iiwa for Interactive Tracking
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
1808
1814
.
You do not currently have access to this content.