Abstract

Typically, for pick-and-place robots operating at high speeds, an enormous amount of energy is lost during the robot braking phase. This is due to the fact that, during such operational phase, most of the energy is dissipated as heat on the braking resistances of the motor drivers. To increase the energy efficiency during the high-speed pick-and-place cycles, this article investigates the use of variable stiffness springs (VSS) in parallel configuration with the motors. These springs store the energy during the braking phase, instead of dissipating it. The energy is then released to actuate the robot in a next displacement phase. This design approach is combined with a motion generator which seeks to optimize trajectories for input torques reduction (and thus of energy consumption), through solving a boundary value problem (BVP) based on the robot dynamics. Experimental results of the suggested approach on a five-bar mechanism show the drastic reduction of input torques and therefore of energetic losses.

References

1.
Brossog
,
M.
,
Bornschlegl
,
M.
, and
Franke
,
J.
,
2015
, “
Reducing the Energy Consumption of Industrial Robots in Manufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1315
1328
.
2.
Briot
,
S.
,
Caro
,
S.
, and
Germain
,
C.
,
2017
, “
Design Procedure for a Fast and Accurate Parallel Manipulator
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061012
.
3.
Carabin
,
G.
,
Wehrle
,
E.
, and
Vidoni
,
R.
,
2017
, “
A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems
,”
Robotics
,
6
(
4
), p.
39
.
4.
Vidussi
,
F.
,
Boscariol
,
P.
,
Scalera
,
L.
, and
Gasparetto
,
A.
,
2021
, “
Local and Trajectory-Based Indexes for Task-Related Energetic Performance Optimization of Robotic Manipulators
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021018
.
5.
Kim
,
Y.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
.
6.
Arakelian
,
V.
,
Dahan
,
M.
, and
Smith
,
M.
,
2000
, “
A Historical Review of the Evolution of the Theory on Balancing of Mechanisms
,”
Proceedings of the HMM2000 International Symposium on History of Machines and Mechanisms
,
Cassino, Italy
,
May 11–13
, pp.
291
300
.
7.
Baradat
,
C.
,
Arakelian
,
V.
,
Briot
,
S.
, and
Guégan
,
S.
,
2008
, “
Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072305
.
8.
Chu
,
Y.-L.
, and
Kuo
,
C.-H.
,
2017
, “
A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload1
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021006
.
9.
Pratt
,
G.
, and
Williamson
,
M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
, Vol.
1
,
Pittsburgh, PA
,
Aug. 5–9
, pp.
399
406
.
10.
Van Ham
,
R.
,
Thomas
,
S.
,
Vanderborght
,
B.
,
Hollander
,
K.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs: Review of Actuators With Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications
,”
IEEE Rob. Auto. Magazine
,
16
(
3
), pp.
81
94
.
11.
Wolf
,
S.
,
Grioli
,
G.
,
Eiberg
,
O.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Catalano
,
M.
,
Lefeber
,
D.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Vanderborght
,
B.
,
Visser
,
L.
,
Bicchi
,
A.
, and
Albu-Schaeffer
,
A.
,
2016
, “
Variable Stiffness Actuators: Review on Design and Components
,”
IEEE/ASME Trans. Mech.
,
21
(
5
), pp.
2418
2430
.
12.
Ning
,
Y.
,
Huang
,
H.
,
Xu
,
W.
,
Zhang
,
W.
, and
Li
,
B.
,
2021
, “
Design and Implementation of a Novel Variable Stiffness Actuator With Cam-Based Relocation Mechanism
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021009
.
13.
Stücheli
,
M.
,
Daners
,
M. S.
, and
Meboldt
,
M.
,
2017
, “
Benchmark of the Compactness Potential of Adjustable Stiffness Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051009
.
14.
Mathijssen
,
G.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2015
, “
Variable Recruitment of Parallel Elastic Elements: Series Parallel Elastic Actuators (SPEA) With Dephased Mutilated Gears
,”
IEEE/ASME Trans. Mech.
,
20
(
2
), pp.
594
602
.
15.
Furnémont
,
R.
,
Mathijssen
,
G.
,
Verstraten
,
T.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2016
, “
Bi-Directional Series-Parallel Elastic Actuator and Overlap of the Actuation Layers
,”
Bioinspiration Biomimetics
,
11
(
1
), pp.
1
18
.
16.
Pratt
,
J.
,
Chee
,
M.
,
Torres
,
A.
,
Dilworth
,
P.
, and
Pratt
,
G.
,
2001
, “
Virtual Model Control: An Intuitive Approach for Bipedal Locomotion
,”
Int. J. Rob. Res.
,
20
(
2
), pp.
129
143
.
17.
Tsagarakis
,
N.
,
Laffranchi
,
M.
,
Vanderborght
,
B.
, and
Caldwell
,
D.
,
2009
, “
A Compact Soft Actuator Unit for Small Scale Human Friendly Robots
,”
Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA 2009)
,
Kobe, Japan
,
May 12–17
, pp.
4356
4362
.
18.
Jafari
,
A.
,
Tsagarakis
,
N.
, and
Caldwell
,
D.
,
2011
, “
Exploiting Natural Dynamics for Energy Minimization Using an Actuator With Adjustable Stiffness (AwAS)
,”
Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA 2011)
,
Shanghai, China
,
May 9–13
, pp.
4632
4637
.
19.
Barreto
,
J.
,
Schöler
,
F.
, and
Corves
,
B.
,
2016
, “The Concept of Natural Motion for Pick and Place Operations, Mechanisms and Machine Science,
Springer
,
Cham
, pp.
89
98
.
20.
Schiehlen
,
W.
, and
Guse
,
N.
,
2005
, “
Control of Limit Cycle Oscillations
,”
Proceedings of the IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics
,
Rome, Italy
,
June 8–13
, pp.
429
439
.
21.
Scalera
,
L.
,
Carabin
,
G.
,
Vidoni
,
R.
, and
Wongratanaphisan
,
T.
,
2019
, “
Energy Efficiency in a 4-dof Parallel Robot Featuring Compliant Elements
,”
Int. J. Mech. Control
,
20
(
2
), pp.
49
57
.
22.
van der Spaa
,
L. F.
,
Wolfslag
,
W. J.
, and
Wisse
,
M.
,
2019
, “
Unparameterized Optimization of the Spring Characteristic of Parallel Elastic Actuators
,”
IEEE Rob. Auto. Lett.
,
4
(
2
), pp.
854
861
.
23.
Santina
,
C. D.
, and
Albu-Schaeffer
,
A.
,
2021
, “
Exciting Efficient Oscillations in Nonlinear Mechanical Systems Through Eigenmanifold Stabilization
,”
IEEE Control Syst. Lett.
,
5
(
6
), pp.
1916
1921
.
24.
Carabin
,
G.
,
Scalera
,
L.
,
Wongratanaphisan
,
T.
, and
Vidoni
,
R.
,
2021
, “
An Energy-Efficient Approach for 3d Printing With a Linear Delta Robot Equipped With Optimal Springs
,”
Rob. Comput.-Int. Manufact.
,
67
, p.
102045
.
25.
Uemura
,
M.
, and
Kawamura
,
S.
,
2009
, “
Resonance-Based Motion Control Method for Multi-Joint Robot Through Combining Stiffness Adaptation and Iterative Learning Control
,”
Proceedings of 2009 IEEE International Conference on Robotics and Automation (ICRA 2009)
,
Kobe, Japan
,
May 12–17
, pp.
1543
1548
.
26.
Goya
,
H.
,
Matsusaka
,
K.
,
Uemura
,
M.
,
Nishioka
,
Y.
, and
Kawamura
,
S.
,
2012
, “
Realization of High-Energy Efficient Pick-and-Place Tasks of Scara Robots by Resonance
,”
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012)
,
Vilamoura, Algarve, Portugal
,
Oct. 7–12
, pp.
2730
2735
.
27.
Hollander
,
K.
, and
Sugar
,
T.
,
2004
, “
Concepts for Compliant Actuation in Wearable Robotic Systems
,”
Proceedings of the US-Korea Conference on Science, Technology and Entrepreneurship (UKC 04)
,
Seoul, South Korea
, Vol.
128
, pp.
644
650
.
28.
Balderas Hill
,
R.
,
Briot
,
S.
,
Chriette
,
A.
, and
Martinet
,
P.
,
2018
, “
Increasing Energy Efficiency of High-Speed Parallel Robots by Using Variable Stiffness Springs and Optimal Motion Generation
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2018)
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
29.
Balderas-Hill
,
R.
,
Briot
,
S.
,
Chriette
,
A.
, and
Martinet
,
P.
,
2018
, “
Minimizing Input Torques of a High-Speed Five-Bar Mechanism by Using Variable Stiffness Springs
,”
Proceedings of the 22nd CISM IFToMM Symposium on Robot Design, Dynamics and Control (RoManSy 2018)
,
Rennes, France
,
June 25–28
.
30.
Briot
,
S.
, and
Khalil
,
W.
,
2015
,
Dynamics of Parallel Robots—From Rigid Links to Flexible Elements
,
Springer
,
Cham, Switzerland
.
31.
Khalil
,
W.
, and
Dombre
,
E.
,
2004
,
Modeling, Identification and Control of Robots
,
Hermès
,
London
.
32.
Merlet
,
J.
,
2006
,
Parallel Robots
,
Springer
,
Dordrecht, The Netherlands
.
33.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE. Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
34.
Roberts
,
S.
, and
Shipman
,
J.
,
1972
,
Two-Point Boundary Value Problems: Shooting Methods
,
Elsevier
,
New York
.
35.
Moré
,
J.
,
1978
,
The Levenberg-Marquardt Algorithm: Implementation and Theory
(Vol. 630 of Numerical Analysis. Lecture Notes in Mathematics,
Springer-Verlag
,
Berlin/Heidelberg
.
36.
Balderas Hill
,
R.
,
Six
,
D.
,
Chriette
,
A.
,
Briot
,
S.
, and
Martinet
,
P.
,
2017-05
, “
Crossing Type 2 Singularities of Parallel Robots Without Pre-Planned Trajectory With a Virtual-Constraint-Based Controller
,”
Proceedings of 2017 IEEE International Conference on Robotics and Automation (ICRA 2017)
,
Marina Bay Sands Convention Centre, Singapore
,
May 29–June 3
.
37.
Merlet
,
J.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
38.
Hollerbach
,
J.
,
Khalil
,
W.
, and
Gautier
,
M.
,
2008
,
Model Identification
,
Springer
,
London
. ch. 14.
39.
Balderas Hill
,
R.
,
Briot
,
S.
,
Chriette
,
A.
, and
Martinet
,
P.
,
2020
, “
Minimizing the Energy Consumption of a Delta Robot by Exploiting the Natural Dynamics
,”
Proceedings of the 23rd CISM IFToMM Symposium on Robot Design, Dynamics and Control (RoManSy 2020)
,
Sapporo, Japan
,
Sept. 20–24
.
You do not currently have access to this content.