Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Climate change and the continuous increase of greenhouse gas concentration have a great impact on the human economy and society. Dozens of countries and regions have proposed the climate goal of “zero carbon” or “carbon neutrality.” Therefore, how to make products low carbon has become a trend in product design. This study proposes a low-carbon optimization method based on carbon footprint allocation for products, which can be used to solve the problem of overall product low-carbon optimization and selection of key parts. The first contribution is to build a product carbon footprint analysis model and propose an element-based carbon footprint allocation method. The second contribution is to propose a low-carbon material selection method based on comprehensive carbon emissions, economic cost, and material density and to propose a structural topology optimization method on force condition and carbon emission reduction timeliness. The third contribution is to use force analysis and manufacturing process simulation to ensure the feasibility of the optimization scheme. Finally, a product life cycle carbon emission reduction scheme for high-carbon parts is formed, which takes into account the emission reduction time constraint, comprehensive carbon emissions, economy, mechanical properties, and manufacturability. For illustration, taking a dishwasher product as an example, the results show that the proposed method can effectively identify parts with high-carbon footprint and reduce the carbon footprint.

References

1.
Wang
,
L. Y.
,
Zhao
,
L.
,
Mao
,
G. Z.
,
Zuo
,
J.
, and
Du
,
H. B.
,
2017
, “
Way to Accomplish Low Carbon Development Transformation: A Bibliometric Analysis During 1995–2014
,”
Renewable Sustainable Energy Rev.
,
68
, pp.
57
69
.
2.
Es-sadqi
,
M.
,
Laghrissi
,
A.
, and
Idrissi
,
A.
,
2016
, “
Reducing Carbon Footprint in Redundancy Allocation Problem Applied to Multi-State Systems
,”
International Renewable and Sustainable Energy Conference (IRSEC)
,
Marrakech, Morocco
,
Nov. 14–17
, pp.
1125
1129
.
3.
Lu
,
Q.
,
Zhou
,
G. H.
,
Zhou
,
C.
, and
Xiao
,
Z. D.
,
2017
, “
A Carbon Emissions Allocation Method Based on Temperature Field for Products in the Usage Stage
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
917
929
.
4.
Ma
,
Y.
,
Li
,
F. Y.
,
Wang
,
L. M.
, and
Wang
,
G.
,
2021
, “
Life Cycle Environmental Impact Assessment of Machine Tool Based on Multi-Level Data Distribution
,”
Comput. Integr. Manuf. Syst.
,
27
(
3
), pp.
757
769
.
5.
Ubando
,
A. T.
,
Culaba
,
A. B.
,
Aviso
,
K. B.
, and
Tan
,
R. R.
,
2013
, “
Simultaneous Carbon Footprint Allocation and Design of Trigeneration Plants Using Fuzzy Fractional Programming
,”
Clean Technol. Environ. Policy
,
15
(
5
), pp.
823
832
.
6.
Song
,
J. S.
, and
Lee
,
K. M.
,
2010
, “
Development of a Low-Carbon Product Design System Based on Embedded GHG Emissions
,”
Resour. Conserv. Recycl.
,
54
(
9
), pp.
547
556
.
7.
Gui
,
F. Z.
,
Ren
,
S. D.
,
Zhao
,
Y. W.
,
Zhou
,
J. Q.
,
Xie
,
Z. W.
,
Xu
,
C.
, and
Zhu
,
F.
,
2019
, “
Activity-Based Allocation and Optimization for Carbon Footprint and Cost in Product Lifecycle
,”
J. Cleaner Prod.
,
236
, p.
117627
.
8.
Ma
,
Y.
,
Li
,
F. Y.
,
Wang
,
L. M.
,
Wang
,
G.
, and
Kong
,
L.
,
2021
, “
Life Cycle Carbon Emission Assessments and Comparisons of Cast Iron and Resin Mineral Composite Machine Tool Bed in China
,”
Int. J. Adv. Manuf. Technol.
,
113
(
3–4
), pp.
1143
1152
.
9.
Li
,
Y. Q.
,
2021
, “
Application of Low-Carbon Environmental Protection Concept in Bamboo Material Product Design
,”
Fresenius Environ. Bull.
,
30
(
10
), pp.
11332
11339
. https://www.prt-parlar.de/download_list/?c=FEB_2021
10.
Xiang
,
H.
, and
Wang
,
W. M.
,
2011
, “
Honeycomb Paperboard Pack—Green & Low Carbon Packaging Solution for Home Appliance
,”
Adv. Mater. Res.
,
160–162
, pp.
1176
1180
.
11.
He
,
B.
,
Tang
,
W.
,
Huang
,
S.
,
Hou
,
S. C.
, and
Cai
,
H.
,
2016
, “
Towards Low-Carbon Product Architecture Using Structural Optimization for Lightweight
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
1419
1429
.
12.
Li
,
Q.
,
Tong
,
M.
,
Jia
,
M.
, and
Yang
,
J.
,
2022
, “
Towards Low Carbon: A Lightweight Design of Automotive Brake Hub
,”
Sustainability
,
14
(
22
), p.
15122
.
13.
Zou
,
X.
,
Huang
,
H. H.
,
Li
,
L.
, and
Liu
,
Z. F.
,
2023
, “
Matching the Mechanical System of Metal Forming Equipment to Reduce Life Cycle Carbon Emissions
,”
Int. J. Mater. Form.
,
16
(
5
), p.
47
.
14.
Liu
,
X. L.
,
Zhang
,
Y. J.
,
Li
,
Y. L.
, and
Gao
,
R.
,
2016
, “
Cutting Fluid System Optimization for Low-Carbon Oriented Manufacturing Process
,”
J. Xi’an Jiaotong Univ.
,
50
(
2
), pp.
91
97
.
15.
Cheng
,
H. Q.
,
Cao
,
H. J.
,
Li
,
H. C.
, and
Luo
,
Y.
,
2013
, “
Decision-Making Model of Mechanical Components Based on Carbon Benefit and Its Application
,”
Comput. Integr. Manuf. Syst.
,
19
(
8
), pp.
2018
2025
.
16.
Xu
,
J. T.
,
Li
,
T.
,
Chen
,
J. C.
,
Yang
,
S. D.
, and
Zhang
,
H. C.
,
2017
, “
An Energy Consumption Model and Experimental Research of Numerical Control Machine Tools
,”
J. Cent. South Univ.
,
48
(
8
), pp.
2024
2033
.
17.
Deng
,
C.
,
Wu
,
J.
, and
Shao
,
X. Y.
,
2016
, “
Research on Eco-Balance With LCA and LCC for Mechanical Product Design
,”
Int. J. Adv. Manuf. Technol.
,
87
(
5–8
), pp.
1217
1228
.
18.
Xu
,
Z. Z.
,
Teng
,
Z. R.
,
Zhong
,
C. Q.
,
Liu
,
Z. J.
, and
Ma
,
X. F.
,
2014
, “
Multi-Objective Optimization for Performance, Cost and Carbon Tax of Low-Carbon Product
,”
Inf. Technol. J.
,
13
(
2
), pp.
278
285
.
19.
Trust
,
G. C.
,
2011
,
PAS 2050—Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services
,
British Standards Institution
,
London
.
20.
Zhang
,
X. F.
,
Zhang
,
S. Y.
,
Hu
,
Z. Y.
,
Yu
,
G.
,
Pei
,
C. H.
, and
Sa
,
R. N.
,
2012
, “
Identification of Connection Units With High GHG Emissions for Low-Carbon Product Structure Design
,”
J. Cleaner Prod.
,
27
, pp.
118
125
.
21.
Restrepo
,
A.
,
Becerra
,
R.
, and
Tibaquira
,
G. J. E.
,
2016
, “
Energetic and Carbon Footprint Analysis in Manufacturing Process of Bamboo Boards in Colombia
,”
J. Cleaner Prod.
,
126
, pp.
563
571
.
22.
Devanathan
,
S.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2010
, “
Integration of Sustainability Into Early Design Through the Function Impact Matrix
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081004
.
23.
He
,
B.
,
Tang
,
W.
, and
Wang
,
J.
,
2015
, “
Product Model Integrated With Carbon Footprint for Llow-Carbon Design
,”
Int. J. Precis. Eng. Manuf.
,
16
(
11
), pp.
2383
2388
.
24.
Song
,
J. Y.
,
Li
,
R. W.
,
Guo
,
L.
,
Wu
,
X. L.
, and
Liu
,
H. X.
,
2020
, “
Research on the Construction of Product Carbon Chain in Supply Chain and Calculation of Carbon Footprint Based on Discriminant Factors
,”
Int. J. Adv. Manuf. Technol.
,
111
(
1–2
), pp.
589
596
.
25.
ISO
,
2018
,
ISO 14067:2018 Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification
,
International Organization for Standardization
,
Switzerland
.
26.
Zhang
,
C.
,
Huang
,
H. H.
,
Zhang
,
L.
,
Bao
,
H.
, and
Liu
,
Z. F.
,
2018
, “
Low-Carbon Design of Structural Components by Integrating Material and Structural Optimization
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9–12
), pp.
4547
4560
.
27.
Bao
,
H.
,
Liu
,
G. F.
, and
Wang
,
J. K.
,
2013
, “
Optimal Design of Products With Low-Carbon Based on Carbon Footprint Analysis
,”
J. Comput. Aided Des. Comput. Graph.
,
25
(
2
), pp.
264
272
.
28.
Zhang
,
L.
,
Jiang
,
S. X.
, and
Zhang
,
W. W.
,
2017
, “
Carbon Emission Assessments of Cutting Processes Driven by 3D Models
,”
Chin. J. Mech. Eng.
,
28
(
13
), pp.
1613
1619 and 1627
.
29.
Yi
,
Q.
,
Li
,
C. B.
,
Zhang
,
X. L.
,
Liu
,
F.
, and
Tang
,
Y.
,
2015
, “
An Optimization Model of Machining Process Route for Low Carbon Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
80
(
5–8
), pp.
1181
1196
.
30.
Peng
,
J.
,
Li
,
W. Q.
,
Li
,
Y.
,
Xie
,
Y. M.
, and
Xu
,
Z. L.
,
2019
, “
Innovative Product Design Method for Low-Carbon Footprint Based on Multi-Layer Carbon Footprint Information
,”
J. Cleaner Prod.
,
228
, pp.
729
745
.
31.
Yu
,
H. M.
,
Tian
,
X. F.
, and
Yuan
,
A. H.
,
2011
, “
Green Design in Low Carbon Environment
,”
2011 International Symposium on Water Resource and Environmental Protection (ISWREP)
,
Xi’an, China
,
May 20–22
, pp.
2657
2660
.
32.
Zhang
,
L.
,
Liu
,
Z. F.
,
Bao
,
H.
, and
Li
,
L.
,
2022
,
Green Design
,
Tsinghua University Press
,
Beijing
.
33.
Sphera, “Search Life Cycle Assessment Datasets,” https://lcadatabase.sphera.com/, Accessed July 11, 2024.
34.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
35.
Liu
,
K.
, and
Tovar
,
A.
,
2014
, “
An Efficient 3D Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
50
(
6
), pp.
1175
1196
.
36.
IPCC
,
2014
,
Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer, eds.]
,
IPCC
,
Geneva, Switzerland
, p.
151
.
37.
Xie
,
L. J.
,
Zhang
,
W. G.
,
Chang
,
W. B.
, and
Cui
,
J.
,
2013
, “
Multi-Objective Topology Optimization for Electric Car Body Based on SIMP Theory
,”
Automot. Eng.
,
35
(
7
), pp.
583
587
.
38.
Zhu
,
L. H.
,
2012
, “
Uncertainty Analysis of the Inventory in LCA of Product
,”
Master’s thesis
,
Hefei University of Technology
,
Hefei, CN
.
39.
Xu
,
J. Q.
, and
Yang
,
Y. P.
,
2019
, “
Whole Life Cycle Assessment of Automotive Products Considering Recycling Processes
,”
Chin. J. Mech. Eng.
,
30
(
11
), pp.
1343
1351
.
40.
European Commission
, “
Packaging Waste
,” https://environment.ec.europa.eu/topics/waste-and-recycling/packaging-waste_en, Accessed October 1, 2023.
You do not currently have access to this content.