Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This research introduces an innovative framework to engineering design to tackle the challenges of robustness against manufacturing deviations and holistic optimization simultaneously in a multi-disciplinary, multi-subsystems context. The methodology is based on an application of ensemble artificial neural networks, which significantly accelerates computational processes. Coupled with the non-dominated sorting genetic algorithm III, this approach facilitates efficient multi-objective optimization, yielding a comprehensive Pareto front and high-quality design solutions. Here, the framework is applied to the design of gas-bearing-supported turbocompressors. These systems are challenging due to their sensitivity to manufacturing variations, particularly in the gas-bearing geometry, which can lead to rotordynamic instability. Additionally, the interdependencies between the subsystems, such as axial and journal bearings, rotor, compressor impellers, and magnets, necessitate a multidisciplinary approach that spans aerodynamics, structural dynamics, rotordynamics, mechanics, loss analyses, and more. A clear tradeoff between system efficiency, mass-flow range, and robustness has been identified for the compressor design. Higher nominal compressor mass-flows, i.e., increased nominal power, is suggested to decrease the hypervolume of feasible manufacturing deviations. Hence, there is a sweet power spot for gas-bearing supported turbomachinery. Further, the framework’s computational efficiency is on par with that of a university cluster, while only employing a desktop computer equipped with a consumer-grade graphics card. This work demonstrates a significant advancement in the design of complex engineering systems and sets a new standard for speed and efficiency in computational engineering design.

References

1.
Sobieszczanski-Sobieski
,
J.
,
1995
, “
Multidisciplinary Design Optimization: An Emerging New Engineering Discipline
,”
Adv. Struct. Optim.
, pp.
483
496
.
2.
Cramer
,
E. J.
,
Dennis
,
Jr.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
(
4
), pp.
754
776
.
3.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
4.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
,
1997
, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
,
14
(
1
), pp.
1
23
.
5.
Meng
,
D.
,
Yang
,
S.
,
He
,
C.
,
Wang
,
H.
,
Lv
,
Z.
,
Guo
,
Y.
, and
Nie
,
P.
,
2022
, “
Multidisciplinary Design Optimization of Engineering Systems Under Uncertainty: A Review
,”
Int. J. Struct. Integr.
,
13
(
4
), pp.
565
593
.
6.
Hasenkamp
,
T.
,
Arvidsson
,
M.
, and
Gremyr
,
I.
,
2009
, “
A Review of Practices for Robust Design Methodology
,”
J. Eng. Des.
,
20
(
6
), pp.
645
657
.
7.
Arvidsson
,
M.
, and
Gremyr
,
I.
,
2008
, “
Principles of Robust Design Methodology
,”
Qual. Reliab. Eng. Int.
,
24
(
1
), pp.
23
35
.
8.
Moritz Göhler
,
S.
,
Eifler
,
T.
, and
Howard
,
T. J.
,
2016
, “
Robustness Metrics: Consolidating the Multiple Approaches to Quantify Robustness
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111407
.
9.
Meng
,
D.
,
Xie
,
T.
,
Wu
,
P.
,
Zhu
,
S.-P.
,
Hu
,
Z.
, and
Li
,
Y.
,
2020
, “
Uncertainty-Based Design and Optimization Using First Order Saddle Point Approximation Method for Multidisciplinary Engineering Systems
,”
ASCE-ASME J. Risk Uncert. Eng. Syst., Part A: Civil Eng.
,
6
(
3
), p.
04020028
.
10.
Park
,
G.-J.
,
Lee
,
T.-H.
,
Lee
,
K. H.
, and
Hwang
,
K.-H.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
11.
Mohammad Zadeh
,
P.
, and
Sadat Shirazi
,
M.
,
2017
, “
Multidisciplinary Design Optimization Architecture to Concurrent Design of Satellite Systems
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
231
(
10
), pp.
1898
1916
.
12.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Liu
,
J.
, and
Yuan
,
B.
,
2017
, “
Surrogate Assisted Multidisciplinary Design Optimization for an All-Electric GEO Satellite
,”
Acta Astronaut.
,
138
, pp.
301
317
.
13.
Kumar
,
A.
,
Nair
,
P. B.
,
Keane
,
A. J.
, and
Shahpar
,
S.
,
2008
, “
Robust Design Using Bayesian Monte Carlo
,”
Int. J. Numer. Methods Eng.
,
73
(
11
), pp.
1497
1517
.
14.
Klimczyk
,
W. A.
, and
Goraj
,
Z. J.
,
2017
, “
Robust Design and Optimization of UAV Empennage
,”
Aircraft Eng. Aerosp. Technol.
,
89
(
4
), pp.
609
619
.
15.
Keane
,
A. J.
, and
Voutchkov
,
I. I.
,
2020
, “
Robust Design Optimization Using Surrogate Models
,”
J. Comput. Des. Eng.
,
7
(
1
), pp.
44
55
.
16.
Massoudi
,
S.
,
Picard
,
C.
, and
Schiffmann
,
J.
,
2022
, “
Robust Design Using Multiobjective Optimisation and Artificial Neural Networks With Application to a Heat Pump Radial Compressor
,”
Des. Sci.
,
8
, pp.
1041
1050
.
17.
Shi
,
R.
,
Long
,
T.
,
Ye
,
N.
,
Wu
,
Y.
,
Wei
,
Z.
, and
Liu
,
Z.
,
2021
, “
Metamodel-Based Multidisciplinary Design Optimization Methods for Aerospace System
,”
Astrodynamics
,
5
(
3
), pp.
185
215
.
18.
Massoudi
,
S.
, and
Schiffmann
,
J.
,
2023
, “
Robust Design of Herringbone Grooved Journal Bearings Using Multi-objective Optimization With Artificial Neural Networks
,”
ASME J. Turbomach.
,
145
(
11
), p.
111010
.
19.
Lin
,
Q.
,
Zhou
,
Q.
,
Hu
,
J.
,
Cheng
,
Y.
, and
Hu
,
Z.
,
2022
, “
A Sequential Sampling Approach for Multi-fidelity Surrogate Modeling-Based Robust Design Optimization
,”
ASME J. Mech. Des.
,
144
(
11
), p.
111703
.
20.
Meng
,
D.
,
Li
,
Y.
,
He
,
C.
,
Guo
,
J.
,
Lv
,
Z.
, and
Wu
,
P.
,
2021
, “
Multidisciplinary Design for Structural Integrity Using a Collaborative Optimization Method Based on Adaptive Surrogate Modelling
,”
Mater. Des.
,
206
, p.
109789
.
21.
Meibody
,
M. N. P.
,
Naseh
,
H.
, and
Ommi
,
F.
,
2021
, “
Developing a Multi-objective Multi-disciplinary Robust Design Optimization Framework
,”
Sci. Iranica
,
28
(
4
), pp.
2150
2163
.
22.
Schiffmann
,
J.
,
2015
, “
Integrated Design and Multi-objective Optimization of a Single Stage Heat-Pump Turbocompressor
,”
ASME J. Turbomach.
,
137
(
7
), p.
071002
.
23.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2019
, “
Multi-objective Optimization of Grooved Gas Journal Bearings for Robustness in Manufacturing Tolerances
,”
Tribol. Trans.
,
62
(
6
), pp.
1041
1050
.
24.
Perrone
,
M. P.
, and
Cooper
,
L. N.
,
1995
, “
When Networks Disagree: Ensemble Methods for Hybrid Neural Networks
,”
How We Learn; How We Remember: Toward an Understanding of Brain and Neural Systems
, pp.
342
358
.
25.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
4
), pp.
345
376
.
26.
Reynolds
,
O.
,
1883
, “
An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct Or Sinuous, and of the Law of Resistance in Parallel Channels
,”
Phil. Trans. R. Soc. Lond.
,
174
, pp.
935
982
.
27.
Iseli
,
E.
, and
Schiffmann
,
J.
,
2021
, “
Stability and Unbalance Analysis of Rigid Rotors Supported by Spiral Groove Bearings: Comparison of Different Approaches
,”
ASME J. Eng. Gas. Turbines Power.
,
143
(
12
), p.
121008
.
28.
Papavasileiou
,
E.
,
Cornelis
,
J.
, and
Jansen
,
B.
,
2021
, “
A Systematic Literature Review of the Successors of ‘NeuroEvolution of Augmenting Topologies’
,”
Evol. Comput.
,
29
(
1
), pp.
1
73
.
29.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification
,”
IEEE International Conference on Computer Vision (ICCV)
,
Santiago, Chile
, pp.
1026
1034
.
30.
Glorot
,
X.
, and
Bengio
,
Y.
,
2010
, “
Understanding the Difficulty of Training Deep Feedforward Neural Networks
,”
13th International Conference on Artificial Intelligence and Statistics
,
Sardinia, Italy
, pp, 249–256.
31.
LeCun
,
Y. A.
,
Bottou
,
L.
,
Orr
,
G. B.
, and
Müller
,
K. -R.
,
2012
, “Efficient Backprop,”
Neural Networks: Tricks of the Trade
,
Springer
, pp.
9
48
.
32.
Ganaie
,
M. A.
,
Hu
,
M.
,
Malik
,
A. K.
,
Tanveer
,
M.
, and
Suganthan
,
P. N.
,
2022
, “
Ensemble Deep Learning: A Review
,”
Eng. Appl. Artif. Intell.
,
115
.
33.
Deb
,
K.
, and
Jain
,
H.
,
2014
, “
An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
,”
IEEE Trans. Evol. Comput.
,
18
(
4
), pp.
577
601
.
34.
Jain
,
H.
, and
Deb
,
K.
,
2014
, “
An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach
,”
IEEE Trans. Evol. Comput.
,
18
(
4
), pp.
602
622
.
35.
Blank
,
J.
, and
Deb
,
K.
,
2020
, “
Pymoo: Multi-objective Optimization in Python
,”
IEEE Access
,
8
, pp.
89497
89509
.
36.
Vrugt
,
J. A.
, and
Robinson
,
B. A.
,
2007
, “
Improved Evolutionary Optimization From Genetically Adaptive Multimethod Search
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
3
), pp.
708
711
.
37.
Hadka
,
D.
, and
Reed
,
P.
,
2013
, “
Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework
,”
Evol. Comput.
,
21
(
2
), pp.
231
259
.
38.
Das
,
I.
, and
Dennis
,
J.
,
1998
, “
Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems
,”
SIAM J. Optim.
,
8
(
3
), pp.
631
657
.
39.
Mounier
,
V.
,
Picard
,
C.
, and
Schiffmann
,
J.
,
2018
, “
Data-Driven Pre-Design Tool for Small Scale Centrifugal Compressors in Refrigeration
,”
ASME J. Eng. Gas. Turbines Power.
,
140
(
12
), p.
121011
.
40.
Vohr
,
J. H.
, and
Chow
,
C. Y.
,
1965
, “
Characteristics of Herringbone-Grooved, Gas-Lubricated Journal Bearings
,”
J. Basic Eng.
,
87
(
3
), pp.
568
576
.
41.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2018
, “
Effects of Humid Air on Aerodynamic Journal Bearings
,”
Tribol. Int.
,
127
, pp.
333
340
.
42.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
J. Eng. Ind.
,
98
(
2
), pp.
593
600
.
43.
Nelson
,
H. D.
,
1980
, “
A Finite Rotating Shaft Element Using Timoshenko Beam Theory
,”
ASME J. Mech. Des.
,
102
(
4
), pp.
793
803
.
44.
Lepe
,
F.
,
Mora
,
D.
, and
Rodríguez
,
R.
,
2014
, “
Locking-Free Finite Element Method for a Bending Moment Formulation of Timoshenko Beams
,”
Comput. Math. Appl.
,
68
(
3
), pp.
118
131
.
45.
Picard
,
C.
,
Schiffmann
,
J.
, and
Ahmed
,
F.
,
2023
, “
Dated: Guidelines for Creating Synthetic Datasets for Engineering Design Applications
,”
IDETC-CIE
,
Boston, MA
.
46.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2010
, “
Design, Experimental Investigation and Multi-objective Optimization of a Small-Scale Radial Compressor for Heat Pump Applications
,”
Energy
,
35
(
1
), pp.
436
450
.
47.
Miller
,
T. J. E.
,
1993
,
Switched Reluctance Motors and Their Control
,
Magna Physics Publishing and Clarendon Press
,
New York
.
48.
Rosset
,
K.
, and
Schiffmann
,
J.
,
2020
, “
Extended Windage Loss Models for Gas Bearing Supported Spindles Operated in Dense Gases
,”
ASME J. Eng. Gas. Turbines. Power.
,
142
(
6
), p.
061010
.
49.
Olmedo
,
L. E.
, and
Schiffmann
,
J.
,
2023
, “
Towards a Real-Time Capable Hybrid-Twin for Gas-Bearing Supported High-speed Turbocompressors
,”
Energy
,
275
, p.
127385
.
You do not currently have access to this content.