Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The integration of novel technologies into existing product architectures poses significant challenges, especially in managing the associated technical risks that affect system functionality and reliability. Traditional methods often struggle with the unpredictability and complexity of field effects due to technological integration. To address these challenges, this study introduces a novel DSM (Design Structure Matrix)-based method that accurately accounts for and mitigates both first-order and higher-order field effects. By employing the inverse-square law, our method quantifies the attenuation of field effects with distance, thereby enhancing the precision of impact assessments across the system architecture. This approach is substantiated through a case study involving the introduction of a steer-by-wire (SbW) system in automotive design. The case study highlights the method's effectiveness in identifying and managing potential integration points for new technologies, offering a systematic framework for minimizing risk and enhancing system design in automotive engineering. The success of this method in the case study provides practical insights into the design around the impact of field effects, emphasizing its applicability and value in real-world engineering scenarios.

References

1.
Suh
,
E. S.
,
Furst
,
M. R.
,
Mihalyov
,
K. J.
, and
de Weck
,
O.
,
2009
, “
Technology Infusion for Complex Systems: A Framework and Case Study
,”
Syst. Eng.
,
13
(
2
), pp.
186
203
.
2.
Tahan
,
M.
, and
Ben-Asher
,
J. Z.
,
2008
, “
Modeling and Optimization of Integration Processes Using Dynamic Programming
,”
Syst. Eng.
,
11
(
2
), pp.
165
185
.
3.
Eckhause
,
J. M.
,
Hughes
,
D. R.
, and
Gabriel
,
S. A.
,
2009
, “
Evaluating Real Options for Mitigating Technical Risk in Public Sector R&D Acquisitions
,”
Int. J. Project Manage.
,
27
(
4
), pp.
365
377
.
4.
Borgue
,
O.
,
Paissoni
,
C.
,
Panarotto
,
M.
,
Isaksson
,
O.
,
Andreussi
,
T.
, and
Viola
,
N.
,
2021
, “
Design for Test and Qualification Through Activity-Based Modelling in Product Architecture Design
,”
J. Eng. Des.
,
32
(
11
), pp.
646
670
.
5.
Cornford
,
S. L.
, and
Sarsfield
,
L.
,
2004
, “
Quantitative Methods for Maturing and Infusing Advanced Spacecraft Technology
,”
2004 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 6–13
.
6.
Walden
,
D. D.
,
Roedler
,
G. J.
,
Forsberg
,
K.
,
Hamelin
,
R. D.
, and
Shortell
,
T. M.
,
2015
,
INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities
,
Wiley
,
Hoboken, NJ
.
7.
Ulrich
,
K. T.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
8.
Buzdin
,
A. I.
,
2005
, “
Proximity Effects in Superconductor-Ferromagnet Heterostructures
,”
Rev. Mod. Phys.
,
77
(
3
), pp.
935
976
.
9.
Otto
,
K.
,
Hölttä-Otto
,
K.
,
Sanaei
,
R.
, and
Wood
,
K. L.
,
2019
, “
Incorporating Field Effects Into Functional Product-System Architecting Methods
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041402
.
10.
Oakley
,
P. A.
, and
Harrison
,
D. E.
,
2020
, “
Death of the ALARA Radiation Protection Principle as Used in the Medical Sector
,”
Dose-Response
,
18
(
2
), p.
1559325820921641
.
11.
Palumbo
,
D.
,
De Finis
,
R.
,
Di Carolo
,
F.
,
Vasco-Olmo
,
J.
,
Diaz
,
F. A.
, and
Galietti
,
U.
,
2022
, “
Influence of Second-Order Effects on Thermoelastic Behaviour in the Proximity of Crack Tips on Titanium
,”
Exp. Mech.
,
62
(
3
), pp.
521
535
.
12.
Brix Nerenst
,
T.
,
Ebro
,
M.
,
Nielsen
,
M.
,
Bhadani
,
K.
,
Asbjörnsson
,
G.
,
Eifler
,
T.
, and
Nielsen
,
K. L.
,
2022
, “
Sequential Design Process for Screening and Optimization of Robustness and Reliability Based on Finite Element Analysis and Meta-Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
040902
.
13.
Papakonstantinou
,
K. G.
, and
Shinozuka
,
M.
,
2013
, “
Probabilistic Model for Steel Corrosion in Reinforced Concrete Structures of Large Dimensions Considering Crack Effects
,”
Eng. Struct.
,
57
, pp.
306
326
.
14.
Koren
,
G.
,
2017
, “
Proximity Effects and Pair Currents in Cuprate Junctions
,”
Supercond. Sci. Technol.
,
30
(
4
), p.
045008
.
15.
Ginsparg
,
P.
,
1980
, “
First and Second Order Phase Transitions in Gauge Theories at Finite Temperature
,”
Nucl. Phys. B
,
170
(
3
), pp.
388
408
.
16.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Integration of Statistics- and Physics-Based Methods—A Feasibility Study on Accurate System Reliability Prediction
,”
ASME J. Mech. Des.
,
140
(
7
), p.
074501
.
17.
Karpat
,
F.
,
Ekwaro-Osire
,
S.
,
Yilmaz
,
T. G.
,
Dogan
,
O.
, and
Yuce
,
C.
,
2015
, “
Design and Analysis of Internal Gears With Different Rim Thickness and Shapes
,”
ASME 2015 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 13–19
.
18.
Hulse
,
D.
,
Hoyle
,
C.
,
Goebel
,
K.
, and
Tumer
,
I. Y.
,
2018
, “
Quantifying the Resilience-Informed Scenario Cost Sum: A Value-Driven Design Approach for Functional Hazard Assessment
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021403
.
19.
Morkos
,
B.
,
Shankar
,
P.
, and
Summers
,
J. D.
,
2012
, “
Predicting Requirement Change Propagation, Using Higher Order Design Structure Matrices: An Industry Case Study
,”
J. Eng. Des.
,
23
(
12
), pp.
905
926
.
20.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
21.
Moon
,
J.
, and
Suh
,
E. S.
,
2023
, “
Multiple Technology Infusion Assessment: A Framework and Case Study
,”
Res. Eng. Des.
,
34
(
3
), pp.
347
366
.
22.
Irshad
,
L.
,
Demirel
,
H. O.
, and
Tumer
,
I. Y.
,
2020
, “
Automated Generation of Fault Scenarios to Assess Potential Human Errors and Functional Failures in Early Design Stages
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051009
.
23.
Booth
,
J. W.
,
Reid
,
T. N.
,
Eckert
,
C.
, and
Ramani
,
K.
,
2015
, “
Comparing Functional Analysis Methods for Product Dissection Tasks
,”
ASME J. Mech. Des.
,
137
(
8
), p.
081101
.
24.
Walsh
,
H. S.
,
Hejase
,
M.
,
Hulse
,
D.
,
Brat
,
G.
, and
Tumer
,
I. Y.
,
2019
, “
Structural Consequence Analysis: Towards the Quantification of Component Consequential Importance in System Architecture Design
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
25.
Garner
,
C. E.
,
Brophy
,
J. R.
,
Polk
,
J. E.
, and
Pless
,
L. C.
,
1995
, “
A 5,730-Hr Cyclic Endurance Test of the SPT-100
,”
31st Joint Propulsion Conference and Exhibit
,
San Diego, CA
,
July 10–12
.
26.
Brevault
,
L.
,
Lacaze
,
S.
,
Balesdent
,
M.
, and
Missoum
,
S.
,
2016
, “
Reliability Analysis in the Presence of Aleatory and Epistemic Uncertainties, Application to the Prediction of a Launch Vehicle Fallout Zone
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111401
.
27.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
.
28.
Brahma
,
A.
, and
Wynn
,
D. C.
,
2022
, “
Concepts of Change Propagation Analysis in Engineering Design
,”
Res. Eng. Des.
,
34
(
1
), pp.
117
151
.
29.
Brahma
,
A.
, and
Wynn
,
D. C.
,
2020
, “
Margin Value Method for Engineering Design Improvement
,”
Res. Eng. Des.
,
31
(
3
), pp.
353
381
.
30.
Koh
,
E. C. Y.
,
2017
, “
A Study on the Requirements to Support the Accurate Prediction of Engineering Change Propagation
,”
Syst. Eng.
,
20
(
2
), pp.
147
157
.
31.
Abdoune
,
F.
,
Rifi
,
L.
,
Fontanili
,
F.
, and
Cardin
,
O.
,
2023
, “Handling Uncertainties With and Within Digital Twins,”
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future
,
T.
Borangiu
,
D.
Trentesaux
, and
P.
Leitão
, eds.,
Springer International Publishing
,
Cham
, pp.
118
129
.
32.
Browning
,
T. R.
,
2016
, “
Design Structure Matrix Extensions and Innovations: A Survey and New Opportunities
,”
IEEE Trans. Eng. Manage.
,
63
(
1
), pp.
27
52
.
33.
Pimmler
,
T. U.
, and
Eppinger
,
S. D.
,
1994
, “
Integration Analysis of Product Decompositions
,”
ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium
,
Minneapolis, MN
,
Sept. 11–14
, pp.
343
351
.
34.
Lo
,
H.-W.
, and
Liou
,
J. J. H.
,
2018
, “
A Novel Multiple-Criteria Decision-Making-Based FMEA Model for Risk Assessment
,”
Appl. Soft Comput.
,
73
(
1
), pp.
684
696
.
35.
Dordlofva
,
C.
, and
Törlind
,
P.
,
2020
, “
Evaluating Design Uncertainties in Additive Manufacturing Using Design Artefacts: Examples From Space Industry
,”
Des. Sci.
,
6
(
1
), p.
e12
.
36.
Borgue
,
O.
,
Müller
,
J.
,
Leicht
,
A.
,
Panarotto
,
M.
, and
Isaksson
,
O.
,
2019
, “
Constraint Replacement-Based Design for Additive Manufacturing of Satellite Components: Ensuring Design Manufacturability Through Tailored Test Artefacts
,”
Aerospace
,
6
(
11
), p.
124
.
37.
Alonso Fernandez
,
I.
,
2022
, “
Trading Off between Flexibility and Product Platform Constraints for Effective Technology Introduction
,” Chalmers University of Technology, Gothenburg, Sweden.
38.
Papageorgiou
,
A.
,
Ölvander
,
J.
,
Amadori
,
K.
, and
Jouannet
,
C.
,
2020
, “
Multidisciplinary and Multifidelity Framework for Evaluating System-of-Systems Capabilities of Unmanned Aircraft
,”
J. Aircr.
,
57
(
2
), pp.
317
332
.
39.
Zhang
,
G.
,
Morris
,
E.
,
Allaire
,
D.
, and
McAdams
,
D. A.
,
2020
, “
Research Opportunities and Challenges in Engineering System Evolution
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081401
.
40.
Ullah
,
I.
,
Tang
,
D.
,
Wang
,
Q.
, and
Yin
,
L.
,
2017
, “
Exploring Effective Change Propagation in a Product Family Design
,”
ASME J. Mech. Des.
,
139
(
12
), p.
121101
.
41.
Kim
,
G.
,
Kwon
,
Y.
,
Suh
,
E. S.
, and
Ahn
,
J.
,
2016
, “
Analysis of Architectural Complexity for Product Family and Platform
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071401
.
You do not currently have access to this content.