The design of spiral bevel gears remains complex since tooth geometry and the resulting kinematic performance stem directly from the manufacturing process. Spiral bevel gear cutting up to now has relied on the works of several manufacturers. Recent advances in milling machine technology and computer aided manufacturing (CAM) now make it possible to manufacture good quality spiral bevel gears on a standard 5-axis milling machine. This paper describes the computer aided design (CAD) definition and manufacturing of spiral bevel gear tooth surfaces. Process performance is assessed by comparing the resulting surfaces after machining with the predefined CAD surfaces. This manufacturing process makes it possible to obtain geometry analytically, making design easier than with standard spiral bevel gears.

References

1.
Guingand
,
M.
,
de Vaujany
,
J. P.
, and
Icard
,
Y.
,
2004
, “
Fast Three-Dimensional Quasi-Static Static Analysis of Helical Gears Using the Finite Prism Method
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1082
1088
.10.1115/1.1798212
2.
Guingand
,
M.
,
de Vaujany
,
J. P.
, and
Jacquin
,
C. Y.
,
2005
, “
Quasi-Static Analysis of a Face Gear Under Torque
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4301
4318
.10.1016/j.cma.2004.10.010
3.
de Vaujany
,
J. P.
,
Guingand
,
M.
,
Remond
,
D.
, and
Icard
,
Y.
,
2007
, “
Numerical and Experimental Study of the Loaded Transmission Error of a Spiral Bevel Gear
,”
ASME J. Mech. Des.
,
129
(
2
), pp.
195
200
.10.1115/1.2406089
4.
International Organization for Standardization
,
2006
, “Bevel and Hypoid Gear Geometry ISO 23509:2006,” p. 139.
5.
Pan
,
C. Y.
, and
Wen
,
X. S.
,
2004
, “
Profile Formule Derivation of the Involute Spherical Gears
,”
J. Natl. Univ. Def. Technol.
,
24
(
4
), pp.
93
98
.CNKI:SUN:GFKJ.0.2004-04-020
6.
Huston
,
R. L.
, and
Coy
,
J. J.
,
1981
, “
Ideal Spiral Bevel Gears—A New Approach to Surface Geometry
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
127
133
.10.1115/1.3254845
7.
Henriot
,
G.
,
1983
,
Traité théorique et pratique des engrenages. Tome 2
,
Bordas
,
Paris
, p.
662
.
8.
Litvin
,
T.
,
1989
,
Theory of Gearing
,
NASA
,
Washington
, p.
470
.
9.
Tsai
,
Y. C.
, and
Chin
,
P. C.
,
1987
, “
Surface Geometry of Straight and Spiral Bevel Gears
,”
ASME J. Mech., Transm., Autom. Des.
,
109
(
4
), pp.
443
449
.10.1115/1.3258815
10.
Conry
,
T. F.
, and
Seireg
A.
,
1971
, “
A Mathematical Programming Method for Design of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
387
392
.10.1115/1.3408787
11.
Hiltcher
,
Y.
,
Guingand
,
M.
, and
de Vaujany
J. P.
,
2007
, “
Load Sharing of Worm Gear With a Plastic Wheel
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
23
30
.10.1115/1.2359469
12.
Teixeira Alves
,
J.
,
Guingand
,
M.
, and
de Vaujany
,
J. P.
,
2010
, “
Set of Functions for the Calculation of Bending Displacements for Spiral Bevel Gear Teeth
,”
Mech. Mach. Theory
,
45
(
2
), pp.
349
363
.10.1016/j.mechmachtheory.2009.09.006
13.
Boussinesq
,
J.
,
1959
,
Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques
,
Albert Blanchard
,
Paris
, p.
564
.
14.
Vijayakar
,
S.
,
1991
, “
A Combined Surface Integral and Finite Element Solution for a Three-Dimensional Contact Problem
,”
Int. J. Numer. Methods Eng.
,
31
(
3
), pp.
525
545
.10.1002/nme.1620310308
15.
Simon
,
V.
,
2008
, “
Machine-Tool Settings to Reduce the Sensitivity of Spiral Bevel Gears to Tooth Errors and Misalignments
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082603
.10.1115/1.2936903
16.
Simon
,
V.
,
2007
, “
Computer Simulation of Tooth Contact Analysis of Mismatched Spiral Bevel Gears
,”
Mech. Mach. Theory
,
42
(
3
), pp.
365
381
.10.1016/j.mechmachtheory.2006.02.010
17.
Wang
,
P. Y.
, and
Fong
,
Z. H.
,
2005
, “
Adjustability Improvement of Face-Milling Spiral Bevel Gears by Modified Radial Motion (MRM) Method
,”
Mech. Mach. Theory
,
40
(
1
), pp.
69
89
.10.1016/j.mechmachtheory.2004.05.011
18.
Wang
,
P. Y.
, and
Fong
,
Z. H.
,
2005
, “
Mathematical Model of Face-Milling Spiral Bevel Gear With Modified Radial Motion (MRM) Correction
,”
Math. Comput. Modell.
,
41
(
11–12
), pp.
1307
1323
.10.1016/j.mcm.2004.07.015
19.
Fong
,
Z. H.
, and
Tsay
,
C. B.
,
1992
, “
Kinematical Optimization of Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
114
(
3
), pp.
498
506
.10.1115/1.2926578
20.
Simon
,
V. V.
,
1998
, “
The Influence of Misalignments on Mesh Performances of Hypoid Gears
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1277
1291
.10.1016/S0094-114X(98)00005-6
21.
Achtmann
,
J.
, and
Bar
,
G.
,
2003
, “
Optimized Bearing Ellipses of Hypoid Gears
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
739
745
.10.1115/1.1625403
22.
Artoni
,
A.
,
Kolivand
,
K.
, and
Kahraman
,
A.
,
2010
, “
An Ease-Off Based Optimization of the Loaded Transmission Error of Hypoid Gears
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011010
.10.1115/1.4000645
23.
Gosselin
,
C.
,
Guertin
,
T.
,
Remond
,
D.
, and
Jean
,
Y.
,
2000
, “
Simulation and Experimental Measurement of the Transmission Error of Real Hypoid Gears Under Load
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
109
122
.10.1115/1.533555
24.
Fan
,
Q.
,
DaFoe
,
R. S.
, and
Swanger
,
J. W.
,
2008
, “
Higher-Order Tooth Flank Form Error Correction for Face-Milled Spiral Bevel and Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072601
.10.1115/1.2898878
25.
Lin
,
C. Y.
,
Tsay
,
C. B.
, and
Fong
,
Z. H.
,
2001
, “
Computer-Aided Manufacturing of Spiral Bevel and Hypoid Gears by Applying Optimization Techniques
,”
J. Mater. Process. Technol.
,
114
(
1
), pp.
22
35
.10.1016/S0924-0136(01)00734-8
You do not currently have access to this content.