An origami design method based on topology optimization is introduced. The design of a folding pattern is cast as a problem of assigning presence and type of fold to lines in a “ground structure,” using folding angles as design variables. A ground structure for origami design has lines drawn on a two dimensional domain, showing all line segments that may appear as crease lines in the folded geometry. For a given ground structure and folding angles, the 3D geometry of the folded sheet can be computed using the mathematics of origami. A topology optimization method is then used to find an optimal combination of folding angles, which results in a folding pattern with desired, target geometric properties.
Issue Section:
Research Papers
References
1.
Miura
, K.
, 1985
, “Method of Packaging and Deployment of Large Membranes in Space
,” Inst. Space Astronaut. Sci. Rep.
, 618
, pp. 1
–9
.2.
Elsayed
, E. A.
, and Basily
, B. A.
, 2004
, “Continuous Folding Process for Sheet Materials
,” Int. J. Mater. Product Technol.
, 21
(1/2/3
), pp. 217
–238
.10.1504/IJMPT.2004.0047533.
Fuchi
, K.
, Tang
, J.
, Crowgey
, B.
, Diaz
, A. R.
, Rothwell
, E. J.
, and Ouedraogo
, R. O.
, 2012
, “Origami Tunable Frequency Selective Surfaces
,” IEEE Antennas Wireless Propag. Lett.
, 11
, p. 473
–475
.10.1109/LAWP.2012.21964894.
Fuchi.
, K.
, Diaz
, A. R.
, Rothwell
, E. J.
, Ouedraogo
, R. O.
, and Tang
, J.
, 2012
, “An Origami Tunable Metamaterial
,” J. Appl. Phys.
, 111
, p. 084905
.10.1063/1.47043755.
Randall
, C. L.
, Gultepe
, E.
, and Gracias
, D.
, 2011
, “Self-Folding Devices and Materials for Biomedical Applications
,” Trends Biotechnol.
, 30
(3
), pp. 138
–146
.10.1016/j.tibtech.2011.06.0136.
Gracias
, D. H.
, Tien
, J.
, Breen
, T. L.
, Hsu
, C.
, and Whitesides
, G. M.
, 2000
, “Forming Electrical Networks in Three Dimensions by Self-Assembly
,” Science
, 289
, pp. 1170
–1172
.10.1126/science.289.5482.11707.
Jamal
, M.
, Bassik
, N.
, Cho
, J. H.
, Randall
, C. L.
, and Gracias
, D. H.
, 2010
, “Directed Growth of Fibroblasts Into Three Dimensional Micropatterned Geometries Via Self-Assembling Scaffolds
,” Biomaterials
, 31
, pp. 1683
–1690
.10.1016/j.biomaterials.2009.11.0568.
Demaine
, E. D.
, and O'Rourke
, J.
, 2007
, Geometric Folding Algorithms: Linkages, Origami, Polyhedra
, Cambridge University
, New York
.9.
Belcastro
, S.
, and Hull
, T.
, 2002
, “Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,” Linear Algebra Appl.
, 348
, pp. 273
–282
.10.1016/S0024-3795(01)00608-510.
Lang
, R. J.
, 1994
, “The Tree Method of Origami Design
,” The Second International Meeting of Origami Science and Scientific Origami
, K.
Miura
, ed., Seian University of Art of Design
, Otsu, Japan
, pp. 72
–82
.11.
Tachi
, T.
, 2009
, “Simulation of Rigid Origami
,” The Fourth International Conference on Origami in Science, Mathematics, and Education
, R.
Lang
, ed., Pasadena
, pp. 175
–187
.12.
Lang
, R. J.
, 1998
, “Threemaker 4.0: A Program for Origami Design
,” Available at: http://www.langorigami.com/science/computational/treemaker/TreeMkr40.pdf13.
Tachi
, T.
, 2009
, “3D Origami Design Based on Tucking Molecule
,” The Fourth International Conference on Origami in Science, Mathematics, and Education
, R.
Lang
, ed., Pasadena
, pp. 259
–272
.14.
Tachi
, T.
, 2010
, “Origamizing Polyhedral Surfaces
,” IEEE Trans. Vis. Comput. Graph.
, 16
(2
), pp. 298
–311
.10.1109/TVCG.2009.6715.
Dorn
, W. S.
, Gomory
, R. E.
, and Greenberg
, H. J.
, 1964
, “Automatic Design of Optimal Structures
,” J. Mech.
, 3
, pp. 25
–52
.16.
Bendsøe
, M. P.
, Bental
, A.
, and Zowe
, J.
, 1994
, “Optimization Methods for Truss Geometry and Topology Design
,” Struct. Multidiscip. Optim.
, 7
(3
), pp. 141
–159
.10.1007/BF0174245917.
Kawamoto
, A.
, Bendsøe
, M. P.
, and Sigmund
, O.
, 2004
, “Articulated Mechanism Design With a Degree of Freedom Constraint
,” Int. J. Numer. Methods Eng.
, 61
, pp. 1520
–1545
.10.1002/nme.111918.
Gjerde
, E.
, 2008
, Origami Tessellations: Awe-Inspiring Geometric Designs
, A K Peters
, MA
.19.
Tachi
, T.
, and Demaine
, E.
, D.
, 2010
, “Degenerative Coordinates in 22.5 deg Grid System
,” The Fifth International Meeting of Origami Science, Mathematics and Education
, P.
Wang-Iverson
,R. J.
Lang
, and M.
Yim
, eds., Singapore Management University
, Singapore
, pp. 489
–497
.20.
Maekawa
, J.
, 2008
, Genuine Origami: 43 Mathematically-Based Models, From Simple to Complex
, Japan Publications Trading
, Tokyo
.21.
Byrd
, R. H.
, Hribar
, M. E.
, and Nocedal
, J.
, 1999
, “An Interior Point Algorithm for Large-Scale Nonlinear Programming
,” SIAM J. Optim.
, 9
(4
), pp. 877
–900
.10.1137/S105262349732510722.
Byrd
, R. H.
, Gilbert
, J. C.
, and Nocedal
, J.
, 2000
, “A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,” Math. Program.
, 89
(1
), pp. 149
–185
.10.1007/PL0001139123.
Waltz
, R. A.
, Morales
, J. L.
, Nocedal
, J.
, and Orban
, D.
, 2006
, “An Interior Algorithm for Nonlinear Optimization that Combines Line Search and Trust Region Steps
,” Math. Program.
, 107
(3
), pp. 391
–408
.10.1007/s10107-004-0560-5Copyright © 2013 by ASME
You do not currently have access to this content.