Design of high performance materials system requires highly efficient methods for assessing microstructure–property relations of heterogeneous materials. Toward this end, a domain decomposition, affordable analysis, and subsequent stochastic reassembly approach is proposed in this paper. The approach hierarchically decomposes the statistically representative cell (representative volume element (RVE)) into computationally tractable unrepresentative ones (statistical volume element (SVE)) at the cost of introducing uncertainty into subdomain property predictions. Random property predictions at the subscale are modeled with a random field that is subsequently reassembled into a coarse representation of the RVE. The infinite dimension of microstructure is reduced by clustering SVEs into bins defined by common microstructure attributes, with each bin containing a different apparent property random field. We additionally mitigate the computational burden in this strategy by presenting an algorithm that minimizes the number of SVEs required for convergent random field characterization. In the proposed method, the RVE thus becomes a coarse representation, or mosaic, of itself. The mosaic approach maintains sufficient microstructure detail to accurately predict the macroproperty but becomes far cheaper from a computational standpoint. A nice feature of the approach is that the stochastic reassembly process naturally creates an apparent-SVE property database whose elements may be used as mosaic building blocks. This feature enables material design because SVE-apparent properties become the building blocks of new, albeit conceptual, material mosaics. Some simple examples of possible designs are shown. The approach is demonstrated on polymer nanocomposites.

References

1.
McDowell
,
D. L.
, and
Olson
,
G. B.
,
2008
, “
Concurrent Design of Hierarchical Materials and Structures
,”
Sci. Model. Simul.
,
15
, pp.
1
34
.10.1007/s10820-008-9100-6
2.
Panchal
,
J. H.
,
Choi
,
H. J.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
,
2007
, “
A Systems-Based Approach for Integrated Design of Materials, Products and Design Process Chains
,”
J. Comput.-Aided Mater. Des.
,
14
, pp.
265
293
.10.1007/s10820-007-9062-0
3.
Chen
,
W.
,
Yin
,
X. L.
,
Lee
,
S.
, and
Liu
,
W. K.
,
2010
, “
A Multiscale Design Methodology for Hierarchical Systems With Random Field Uncertainty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041006
.10.1115/1.4001210
4.
Yin
,
X. L.
,
Lee
,
S.
,
Chen
,
W.
,
Liu
,
W. K.
, and
Horstemeyer
,
M. F.
,
2009
, “
Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis
ASME J. Mech. Des.
,
131
(
2
), p.
021006
.10.1115/1.3042159
5.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H. J.
, and
Mistree
,
F.
,
2006
, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
.10.1115/1.2202880
6.
Tian
,
R.
,
Chan
,
S.
,
Tang
,
S.
,
Kopacz
,
A. M.
,
Wang
,
J. S.
,
Jou
,
H. J.
,
Siad
,
L.
,
Lindgren
,
L. E.
,
Olson
,
G. B.
, and
Liu
,
W. K.
,
2010
, “
A Multiresolution Continuum Simulation of the Ductile Fracture Process
,”
J. Mech. Phys. Solids
,
58
(
10
), pp.
1681
1700
.10.1016/j.jmps.2010.07.002
7.
Babuska
,
I.
,
1975
,
Homogenization and Its Application—Mathematical and Computational Problems (Partial Differential Equation Solutions for Diffusion and Composite Material Analysis) in Numerical Solution of Partial Differential Equations—III
,
University of Maryland
,
College Park, MD
.
8.
Guedes
,
J. M.
, and
Kikuchi
,
N.
,
1990
, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method With Adaptive Finite-Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
(
2
), pp.
143
198
.10.1016/0045-7825(90)90148-F
9.
Miehe
,
C.
,
Schotte
,
J.
, and
Lambrecht
,
M.
,
2002
, “
Homogenization of Inelastic Solid Materials at Finite Strains Based on Incremental Minimization Principles. Application to the Texture Analysis of Polycrystals
,”
J. Mech. Phys. Solids
,
50
(
10
), pp.
2123
2167
.10.1016/S0022-5096(02)00016-9
10.
Fish
,
J.
, and
Shek
,
K.
,
2000
, “
Multiscale Analysis of Composite Materials and Structures
,”
Compos. Sci. Technol.
,
60
(
12–13
), pp.
2547
2556
.10.1016/S0266-3538(00)00048-8
11.
Chung
,
P. W.
,
Tamma
,
K. K.
, and
Namburu
,
R. R.
,
1999
, “
Asymptotic Expansion Homogenization for Heterogeneous Media: Computational Issues and Applications
,”
Composites, Part A
,
32
(
9
), pp.
1291
1301
.10.1016/S1359-835X(01)00100-2
12.
Oden
,
J. T.
, and
Zohdi
,
T. I.
,
1997
, “
Analysis and Adaptive Modeling of Highly Heterogeneous Elastic Structures
,”
Comput. Methods Appl. Mech. Eng.
,
148
(
3–4
), pp.
367
391
.10.1016/S0045-7825(97)00032-7
13.
Raghavan
,
P.
, and
Ghosh
,
S.
,
2004
, “
Concurrent Multi-Scale Analysis of Elastic Composites by a Multi-Level Computational Model
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6–8
), pp.
497
538
.10.1016/j.cma.2003.10.007
14.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids—Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.10.1016/0022-5096(63)90036-X
15.
Ostoja-Starzewski
,
M.
,
2006
, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
,
21
(
2
), pp.
112
132
.10.1016/j.probengmech.2005.07.007
16.
Yin
,
X. L.
,
Chen
,
W.
,
To
,
A.
,
McVeigh
,
C.
, and
Liu
,
W. K.
,
2008
, “
Statistical Volume Element Method for Predicting Micro Structure-Constitutive Property Relations
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
43–44
), pp.
3516
3529
.10.1016/j.cma.2008.01.008
17.
Greene
,
M. S.
,
Liu
,
Y.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2011
, “
Computational Uncertainty Analysis in Multiresolution Materials via Stochastic Constitutive Theory
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
1–4
), pp.
309
325
.10.1016/j.cma.2010.08.013
18.
Ostoja-Starzewski
,
M.
,
1998
, “
Random Field Models of Heterogeneous Materials
,”
Int. J. Solids Struct.
,
35
(
19
), pp.
2429
2455
.10.1016/S0020-7683(97)00144-3
19.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer-Verlag
,
New York
.
20.
Jiang
,
Z.
,
Chen
,
W.
, and
Burkhart
,
C.
,
2012
, “
A Hybrid Optimization Approach to 3D Porous Microstructure Reconstruction via Gaussian Random Field
,”
ASME 2012 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE)
,
Chicago, IL
.
21.
Tewari
,
A.
, and
Gokhale
,
A. M.
,
2004
, “
Nearest-Neighbor Distances Between Particles of Finite Size in Three-Dimensional Uniform Random Microstructures
,”
Mater. Sci. Eng., A
,
385
(
1–2
), pp.
332
341
.
22.
Holotescu
,
S.
, and
Stoian
,
F. D.
,
2011
, “
Prediction of Particle Size Distribution Effects on Thermal Conductivity of Particulate Composites
,”
Materialwiss. Werkstofftech.
,
42
(
5
), pp.
379
385
.10.1002/mawe.201100792
23.
Al-Ostaz
,
A.
,
Diwakar
,
A.
, and
Alzebdeh
,
K. I.
,
2007
, “
Statistical Model for Characterizing Random Microstructure of Inclusion-Matrix Composites
,”
J. Mater. Sci.
,
42
(
16
), pp.
7016
7030
.10.1007/s10853-006-1117-1
24.
Karasek
,
L.
, and
Sumita
,
M.
,
1996
, “
Characterization of Dispersion State of Filler and Polymer-Filler Interactions in Rubber Carbon Black Composites
,”
J. Mater. Sci.
,
31
(
2
), pp.
281
289
.10.1007/BF01139141
25.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
Chichester, New York
.
26.
Greene
,
M. S.
,
Xu
,
H.
,
Tang
,
S.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2012
, “
A Generalized Uncertainty Propagation Criterioark Studies of Microstructured Material Systems
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
271
291
.10.1016/j.cma.2012.10.023
27.
Liu
,
Y.
,
Greene
,
M. S.
,
Chen
,
W.
,
Dikin
,
D.
, and
Liu
,
W. K.
,
2011
, “
Computational Microstructure Characterization and Reconstruction to Enable Stochastic Multiscale Design
,”
CAD
,
45
, pp.
65
76
.
28.
Sundararaghavan
,
V.
, and
Zabaras
,
N.
,
2005
, “
Classification and Reconstruction of Three-Dimensional Microstructures Using Support Vector Machines
,”
Comput. Mater. Sci.
,
32
(
2
), pp.
223
239
.10.1016/j.commatsci.2004.07.004
29.
Morisita
,
M.
,
1962
, “
Iσ-Index, a Measure of Dispersion of Individuals
,”
Res. Popul. Ecol.
,
4
, pp.
1
7
.10.1007/BF02533903
30.
Morozov
,
I. A.
,
Lauke
,
B.
, and
Heinrich
,
G.
,
2011
, “
A Novel Method of Quantitative Characterization of Filled Rubber Structures by AFM
,”
Kautsch. Gummi Kunstst.
,
64
(
1–2
), pp.
24
27
.
31.
MacQueen
,
J. B.
,
1967
, “
Some Methods of Classification and Analysis of Multivariate Observations
,”
Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California
,
Berkeley
, pp.
281
297
.
32.
Lloyd
,
S. P.
,
1982
, “
Least-Squares Quantization in Pcm
,”
IEEE Trans. Inf. Theory
,
28
(
2
), pp.
129
137
.10.1109/TIT.1982.1056489
33.
Sibson
,
R.
,
1973
, “
Slink—Optimally Efficient Algorithm for Single-Link Cluster Method
,”
Comput. J.
,
16
(
1
), pp.
30
34
.10.1093/comjnl/16.1.30
34.
Ester
,
M.
,
Kriegel
,
H. P.
,
Sander
,
J.
, and
Xu
,
X.
1996
, “
Density-Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise
,”
Second International Conference on Knowledge Discovery and Data Mining
,
Portland, OR
.
35.
Ketchen
,
D. J.
, and
Shook
,
C. L.
,
1996
, “
The Application of Cluster Analysis in Strategic Management Research: An Analysis and Critique
,”
Strategic Manage. J.
,
17
(
6
), pp.
441
458
.10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
36.
Goutte
,
C.
,
Toft
,
P.
,
Rostrup
,
E.
,
Nielsen
,
F. A.
, and
Hansen
,
L. K.
,
1999
, “
On Clustering fMRI Time Series
,”
Neuroimage
,
9
(
3
), pp.
298
310
.10.1006/nimg.1998.0391
37.
Turk
,
M.
, and
Pentland
,
A.
,
1991
, “
Eigenfaces for Recognition
,”
J. Cogn Neurosci.
,
3
(
1
), pp.
71
86
.10.1162/jocn.1991.3.1.71
38.
Sudret
,
B.
, and
Der Kiureghian
,
A.
,
2000
,
Stochastic Finite Element Methods and Reliability: A State-Of-The-Art Report
,
Department of Civil and Environmental Engineering, University of California
,
Berkeley
.
39.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University
,
Princeton, NJ
.
40.
Adcock
,
C. J.
,
1997
, “
Sample Size Determination: A Review
,”
Statistician
,
46
(
2
), pp.
261
283
.
41.
Stein
,
C.
,
1945
, “
A Two-Sample Test for a Linear Hypothesis Where Power Is Independent of Variance
,”
Ann. Math. Statist.
,
16
, pp.
243
258
.10.1214/aoms/1177731088
42.
Cohen
,
J.
,
1977
,
Statistical Power Analysis for the Behavior Science
, Revised ed.,
Academic
,
New York
.
43.
Ramanathan
,
T.
,
Abdala
,
A. A.
,
Stankovich
,
S.
,
Dikin
,
D. A.
,
Herrera-Alonso
,
M.
,
Piner
,
R. D.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Chen
,
X.
,
Ruoff
,
R. S.
,
Nguyen
,
S. T.
,
Aksay
,
I. A.
,
Prud'homme
,
R. K.
, and
Brinson
,
L. C.
,
2008
, “
Functionalized Graphene Sheets for Polymer Nanocomposites
,”
Nat. Nanotechnol.
,
3
(
6
), pp.
327
331
.10.1038/nnano.2008.96
44.
Zheng
,
W.
, and
Wong
,
S. C.
,
2003
, “
Electrical Conductivity and Dielectric Properties of PMMA/Expanded Graphite Composites
,”
Compos. Sci. Technol.
,
63
(
2
), pp.
225
235
.10.1016/S0266-3538(02)00201-4
45.
Putz
,
K. W.
,
Mitchell
,
C. A.
,
Krishnamoorti
,
R.
, and
Green
,
P. F.
,
2004
, “
Elastic Modulus of Single-Walled Carbon Nanotube/Poly(Methyl Methacrylate) Nanocomposites
,”
J. Polym. Sci., Part B: Polym. Phys.
,
42
(
12
), pp.
2286
2293
.10.1002/polb.20073
46.
Brinson
,
H. F.
, and
Brinson
,
L. C.
,
2007
,
Polymer Engineering Science and Viscoelasticity: An Introduction.
,
Springer
,
New York
.
47.
Deng
,
H.
,
Liu
,
Y.
,
Gai
,
D.
,
Dikin
D. A.
,
Putz
,
K. W.
,
Chen
,
W.
, and
Brinson
,
L. C.
,
2011
, “
Utilizing Real and Statistically Reconstructed Microstructures for the Viscoelastic Modeling of Polymer Nanocomposites
,”
Compos. Sci. Technol.
,
72
, pp.
1725
1732
.10.1016/j.compscitech.2012.03.020
48.
Qiao
,
R.
,
Deng
,
H.
,
Putz
,
K. W.
, and
Brinson
,
L. C.
,
2011
, “
Effect of Particle Agglomeration and Interphase on the Glass Transition Temperature of Polymer Nanocomposites
,”
J. Polym. Sci., Part B: Polym. Phys.
,
49
(
10
), pp.
740
748
.10.1002/polb.22236
49.
Coomans
,
D.
, and
Massart
,
D. L.
,
1982
, “
Alternative K-Nearest Neighbor Rules in Supervised Pattern-Recognition. 2. Probabilistic Classification on the Basis of the Knn Method Modified for Direct Density-Estimation
,”
Anal. Chim. Acta
,
138
, pp.
153
165
.10.1016/S0003-2670(01)85298-3
You do not currently have access to this content.