In this study, a crack initiation life prediction methodology for the tooth bending fatigue of hypoid gears is proposed. This methodology employs a previously developed finite-element based hypoid gear root stress model (Hotait et al. 2011, “An Investigation of Root Stresses of Hypoid Gears with Misalignments,” ASME J. Mech. Des., 133, p. 071006) of face-milled and face-hobbed hypoid gears to establish the multiaxial stress time histories within the root fillet regions. These stress time histories are combined with a multiaxial crack initiation fatigue criterion to predict life distributions along roots of the pinion and the gear. The predictions of the multiaxial fatigue model are compared to those from a conventional uniaxial fatigue model to establish the necessity for a multiaxial approach. The model is exercised with an example face-milled hypoid gear set from an automotive application to demonstrate the impact of various misalignments well as the key cutting tool parameters on the resultant tooth bending lives.

References

1.
Davis
,
J. R.
,
2005
,
Gear Materials, Properties, and Manufacture
,
ASM International
,
Materials Park, OH
.
2.
Singh
,
A.
,
2001
, “
An Experimental Investigation of Bending Fatigue Initiation and Propagation Lives
,”
ASME J. Mech. Des.
,
123
, pp.
431
435
.10.1115/1.1370496
3.
Oda
,
S.
, and
Koide
,
T.
,
1983
, “
Study on Bending Fatigue Strength of Helical Gears: 3rd Report, Mechanism of Bending Fatigue Breakage
,”
Bull. JSME
,
26
(
211
), pp.
146
153
.10.1299/jsme1958.26.146
4.
Tobe
,
T.
,
Kato
,
M.
, and
Inoue
,
K.
,
1986
, “
Bending Strength of Carburized SCM42OH Spur Gear Teeth
,”
Bull. JSME
,
29
(
247
), pp.
273
280
.10.1299/jsme1958.29.273
5.
Lyu
,
S.
,
Inoue
,
K.
, and
Kato
,
M.
,
1996
, “
Effects of Surface Treatment on the Bending Fatigue Strength of Carburized Spur Gears
,”
JSME Int. J., Ser. C
,
39
(
1
), pp.
108
114
.10.1299/kikaic.60.1391
6.
Masuyama
,
T.
,
Inoue
,
K.
, and
Yamanaka
,
M.
,
2002
, “
Evaluation of Bending Strength of Carburized Gears Based on Inferential Identification of Principal Surface Layer Defects
,”
JSME Int. J., Ser. C
,
45
(
3
), pp.
794
801
.10.1299/jsmec.45.794
7.
Anno
,
Y.
,
Hayashi
,
K.
, and
Aiuchi
,
S.
,
1974
, “
Bending Fatigue-Strength of Gear Teeth Under Random Loading
,”
Bull. Jpn. Soc. Mech. Eng.
,
17
(
11
), pp.
1192
1199
.10.1299/jsme1958.17.1192
8.
Hanumanna
,
D.
,
Narayanan
,
S.
, and
Krishnamurthy
,
S.
,
2001
, “
Bending Fatigue Testing of Gear Teeth Under Random Loading
,”
Proc. Inst. Mech. Eng, Part C (J. Mech. Eng. Sci.)
,
215
(
7
), pp.
773
784
.10.1243/0954406011524135
9.
Oda
,
S.
,
Koide
,
T.
, and
Mizune
,
M.
,
1985
, “
Study on Bending Fatigue Strength of Helical Gears: 5th Report, Effect of Load Variation on Bending Fatigue Strength
,”
Bull. JSME
,
28
(
244
), pp.
2429
2433
.10.1299/jsme1958.28.2429
10.
Glodez
,
S.
,
Sraml
,
M.
, and
Kramberger
,
J.
,
2002
, “
A Computational Model for Determination of Service Life of Gears
,”
Int. J. Fatigue
,
24
(
10
), pp.
1013
1020
.10.1016/S0142-1123(02)00024-5
11.
Kramberger
,
J.
,
Sraml
,
M.
, and
Glodez
,
S.
,
2004
, “
Computational Model for the Analysis of Bending Fatigue in Gears
,”
Comput. Struct.
,
82
(
23–26
), pp.
2261
2269
.10.1016/j.compstruc.2003.10.028
12.
Podrug
,
S.
,
Jelaska
,
D.
, and
Glodez
,
S.
,
2008
, “
Influence of Different Load Models on Gear Crack Path Shapes and Fatigue Lives
,”
Fatigue Fract. Eng. Mater. Struct.
,
31
(
5
), pp.
327
339
.10.1111/j.1460-2695.2008.01229.x
13.
Socie
,
D.
, and
Bannantine
,
J.
,
1988
, “
Bulk Deformation Fatigue Damage Models
,”
Mater. Sci. Eng.
,
103A
(
1
), pp.
3
13
.10.1016/0025-5416(88)90546-0
14.
Ural
,
A.
,
Heber
,
G.
, and
Wawrzynek
,
P. A.
,
2005
, “
Three-Dimensional, Parallel, Finite Element Simulation of Fatigue Crack Growth in a Spiral Bevel Pinion Gear
,”
Eng. Fract. Mech.
,
72
(
8
), pp.
1148
1170
.10.1016/j.engfracmech.2004.08.004
15.
Liu
,
Y.
, and
Mahadevan
,
S.
,
2007
, “
A Unified Multiaxial Fatigue Damage Model for Isotropic and Anisotropic Materials
,”
Int. J. Fatigue
,
29
(
2
), pp.
347
359
.10.1016/j.ijfatigue.2006.03.011
16.
Findley
,
W. N.
,
1959
, “
A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending
,”
ASME J. Eng. Ind.
,
81
(2), pp.
301
306
.
17.
Matake
,
T.
,
1977
, “
An Explanation on Fatigue Limit Under Combined Stress
,”
Bull. Jpn. Soc. Mech. Eng.
,
20
, pp.
257
263
.10.1299/jsme1958.20.257
18.
McDiarmid
,
D. L.
,
1985
, “
Fatigue Under Out-of-Phase Biaxial Stresses of Different Frequencies
,”
ASTM Spec. Tech. Publ.
,
853
, pp.
606
621
.10.1520/STP36245S
19.
Vidal
,
E.
,
Kenmeugne
,
B.
, and
Robert
,
J. L.
,
1994
, “
Fatigue Prediction of Components Using Multiaxial Criteria
,”
Fourth International Conference on Biaxial/Multiaxial Fatigue
, pp.
353
366
.
20.
Carpinteri
,
A.
,
Spagnoli
,
A.
, and
Vantadori
,
S.
,
2003
, “
A Multiaxial Fatigue Criterion for Random Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
26
(
6
), pp.
515
522
.10.1046/j.1460-2695.2003.00620.x
21.
Liu
,
Y.
, and
Mahadevan
,
S.
,
2005
, “
Multiaxial High-Cycle Fatigue Criterion and Life Prediction for Metals
,”
Int. J. Fatigue
,
27
(
7
), pp.
790
800
.10.1016/j.ijfatigue.2005.01.003
22.
Ninic
,
D.
, and
Stark
,
H. L.
,
2007
, “
A Multiaxial Fatigue Damage Function
,”
Int. J. Fatigue
,
29
(
3
), pp.
533
548
.10.1016/j.ijfatigue.2006.04.003
23.
Chamat
,
A.
,
Abbadi
,
M.
, and
Gilgert
,
J.
,
2007
, “
A New Non-Local Criterion in High-Cycle Multiaxial Fatigue for Non-Proportional Loadings
,”
Int. J. Fatigue
,
29
(
8
), pp.
1465
1474
.10.1016/j.ijfatigue.2006.10.033
24.
Shariyat
,
M.
,
2008
, “
A Fatigue Model Developed by Modification of Gough's Theory, for Random Non-Proportional Loading Conditions and Three-Dimensional Stress Fields
,”
Int. J. Fatigue
,
30
(
7
), pp.
1248
1258
.10.1016/j.ijfatigue.2007.08.018
25.
Karolczuk
,
A.
, and
Macha
,
E.
,
2005
, “
A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials
,”
Int. J. Fract.
,
134
(
3–4
), pp.
267
304
.10.1007/s10704-005-1088-2
26.
Papadopoulos
,
I. V.
,
Davoli
,
P.
, and
Gorla
,
C.
,
1997
, “
A Comparative Study of Multiaxial High-Cycle Fatigue Criteria for Metals
,”
Int. J. Fatigue
,
19
(
3
), pp.
219
235
.10.1016/S0142-1123(96)00064-3
27.
Alfredsson
,
B.
, and
Olsson
,
M.
,
2001
, “
Applying Multiaxial Fatigue Criteria to Standing Contact Fatigue
,”
Int. J. Fatigue
,
23
(
6
), pp.
533
548
.10.1016/S0142-1123(01)00008-1
28.
Wang
,
Y.
, and
Yao
,
W.
,
2004
, “
Evaluation and Comparison of several Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
,
26
(
1
), pp.
17
25
.10.1016/S0142-1123(03)00110-5
29.
Jiang
,
Y.
,
Hertel
,
O.
, and
Vormwald
,
M.
,
2007
, “
An Experimental Evaluation of Three Critical Plane Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
,
29
(
8
), pp.
1490
1502
.10.1016/j.ijfatigue.2006.10.028
30.
Karolczuk
,
A.
, and
Macha
,
E.
,
2008
, “
Selection of the Critical Plane Orientation in Two-Parameter Multiaxial Fatigue Failure Criterion Under Combined Bending and Torsion
,”
Eng. Fract. Mech.
,
75
(
3–4
), pp.
389
403
.10.1016/j.engfracmech.2007.01.021
31.
Borgianni
,
L.
,
Forte
,
P.
, and
Marchi
,
L.
,
2003
, “
Application of a Multiaxial Fatigue Criterion for the Evaluation of Life of Gears of Complex Geometry
,”
ASME Power Transmission and Gearing Conference
, Paper No. 37025, pp.
3
9
.
32.
Davoli
,
P.
,
Bernasconi
,
A.
, and
Carnevali
,
L.
,
2003
, “
Application of Multiaxial Criteria to Contact Fatigue Assessment of Spur Gears
,”
ASME Power Transmission and Gearing Conference
, Paper No. 37025, pp.
11
17
.
33.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Fatigue Model for Contacts Under Mixed Elastohydrodynamic Lubrication Conditions
,”
Int. J. Fatigue
,
33
, pp.
427
436
.10.1016/j.ijfatigue.2010.09.021
34.
Li
,
S.
, and
Kahraman
,
A.
,
2012
, “
A Fatigue Model for Spur Gear Contacts operating Under Mixed Elastohydrodynamic Lubrication Conditions
,”
ASME J. Mech. Des.
,
134
, p.
041007
.10.1115/1.4005655
35.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Physics-based Model to Predict Micro-pitting Fatigue Lives of Lubricated Point Contacts
,”
Int. J. Fatigue
,
47
, pp.
205
215
.10.1016/j.ijfatigue.2012.09.002
36.
Hotait
,
M. A.
,
Kahraman
,
A.
, and
Nishino
,
T.
,
2011
, “
An Investigation of Root Stresses of Hypoid Gears With Misalignments
,”
ASME J. Mech. Des.
,
133
, p.
071006
.10.1115/1.4004224
37.
Kolivand
,
M.
, and
Kahraman
,
A.
,
2009
, “
A Load Distribution Model for Hypoid Gears Using Ease-Off Topography and Shell Theory
,”
Mech. Mach. Theory
,
44
, pp.
1848
1865
.10.1016/j.mechmachtheory.2009.03.009
38.
Stadtfeld
,
H.
,
2000
,
Advanced Bevel Gear Technology
,
The Gleason Works, Rochester, NY
.
You do not currently have access to this content.