Modifying the design of an existing system to meet the needs of a new task is a common activity in mechatronic system development. Often, engineers seek to meet requirements for the new task via control design changes alone, but in many cases new requirements are impossible to meet using control design only; physical system design modifications must be considered. Plant-limited co-design (PLCD) is a design methodology for meeting new requirements at minimum cost through limited physical system (plant) design changes in concert with control system redesign. The most influential plant changes are identified to narrow the set of candidate plant changes. PLCD provides quantitative evidence to support strategic plant design modification decisions, including tradeoff analyses of redesign cost and requirement violation. In this article the design of a counterbalanced robotic manipulator is used to illustrate successful PLCD application. A baseline system design is obtained that exploits synergy between manipulator passive dynamics and control to minimize energy consumption for a specific pick-and-place task. The baseline design cannot meet requirements for a second pick-and-place task through control design changes alone. A limited set of plant design changes is identified using sensitivity analysis, and the PLCD result meets the new requirements at a cost significantly less than complete system redesign.

References

1.
Roos
,
F.
,
2007
, “
Towards a Methodology for Integrated Design of Mechatronic Servo Systems
,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden.
2.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2013
, “
Multidisciplinary Design Optimization of Dynamic Engineering Systems
,” AIAA J., (to be published).
3.
Li
,
Q.
,
Zhang
,
W. J.
, and
Chen
,
L.
,
2001
, “
Design for Control—A Concurrent Engineering Approach for Mechatronic Systems Design
,”
IEEE/ASME Trans. Mechatron.
,
6
(
2
), pp.
161
169
.10.1109/3516.928731
4.
Friedland
,
B.
,
1996
,
Advanced Control System Design
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
5.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the 2001 American Control Conference, IEEE
.
6.
Fathy
,
H. K.
,
2003
, “
Combined Plant and Control Optimization: Theory, Strategies and Applications
,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI.
7.
Peters
,
D. L.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2009
, “
On Measures of Coupling Between the Artifact and Controller Optimal Design Problems
,”
Proceedings of the 2009 ASME Design Engineering Technical Conference
.
8.
Reyer
,
J. A.
,
Fathy
,
H. K.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
Comparison of Combined Embodiment Design and Control Optimization Strategies Using Optimality Conditions
,”
Proceedings of the 2001 ASME Design Engineering Technical Conferences
.
9.
Peters
,
D. L.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2011
, “
Control Proxy Functions for Sequential Design and Control Optimization
,”
ASME J. Mech. Des.
,
133
(
9
), p.
091007
.10.1115/1.4004792
10.
Allison
,
J. T.
,
2013
, “
Engineering System Co-Design With Limited Plant Redesign
,”
Eng. Optimiz.
, ePub.10.1080/0305215X.2013.764999
11.
Li
,
Y.
, and
Bone
,
G. M.
,
2001
, “
Are Parallel Manipulators More Energy Efficient?
,”
Proceedings of the 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation
.
12.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2005
,
Robot Modeling and Control
,
John Wiley & Sons
,
New York
.
13.
Field
,
G.
, and
Stepanenko
,
Y.
,
1996
, “
Iterative Dynamic Programming: An Approach to Minimum Energy Trajectory Planning for Robotic Manipulators
,”
Proceedings of the 1996 IEEE International Conference on Robotics and Automation
.
14.
Ahmadi
,
M.
, and
Buehler
,
M.
,
1999
, “
The ARL Monopod II Running Robot: Control and Energetics
,”
Proceedings of 1999 IEEE International Conference on Robotics and Automation
.
15.
Barili
,
A.
,
Ceresa
,
M.
, and
Parisi
,
C.
,
1995
, “
Energy-Saving Motion Control for an Autonomous Mobile Robot
,”
IEEE International Symposium on Industrial Electronics
.
16.
Mei
,
Y.
,
Lu
,
Y.
,
Hu
,
Y. C.
, and
Lee
,
C. S. G.
,
2004
, “
Energy-Efficient Motion Planning for Mobile Robots
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Automation
.
17.
Mei
,
Y.
,
Lu
,
Y.
,
Lee
,
C. S. G.
, and
Hu
,
Y. C.
,
2006
, “
Energy-Efficient Mobile Robot Exploration
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation
.
18.
Ooi
,
C. C.
, and
Schindelhauer
,
C.
,
2009
, “
Minimal Energy Path Planning for Wireless Robots
,”
Mobile Netw. Appl.
,
14
(
3
), pp.
309
321
.10.1007/s11036-008-0150-5
19.
Grieco
,
J. C.
,
Prieto
,
M.
,
Armada
,
M.
, and
Gonzalez de Santos
,
P.
,
1998
, “
A Six-Legged Climbing Robot for High Payloads
,”
Proceedings of the 1998 IEEE International Conference on Control Applications
.
20.
Pitti
,
A.
, and
Lungarella
,
M.
,
2006
, “
Exploration of Natural Dynamics Through Resonance and Chaos
,”
Proceedings of the 9th Conference on Intelligent Autonomous Systems
.
21.
Sarkar
,
N.
, and
Podder
,
T. K.
,
2001
, “
Coordinated Motion Planning and Control of Autonomous Underwater Vehicle-Manipulator Systems Subject to Drag Optimization
,”
IEEE J. Ocean. Eng.
,
26
(
2
), pp.
228
239
.10.1109/48.922789
22.
Mattila
,
J.
, and
Virvalo
,
T.
,
2000
, “
Energy-Efficient Motion Control of a Hydraulic Manipulator
,”
Proceedings of the 2000 IEEE International Conference on Robotics and Automation
.
23.
Sato
,
A.
,
Sato
,
O.
,
Takahashi
,
N.
, and
Kono
,
M.
,
2007
, “
Trajectory for Saving Energy of a Direct-Drive Manipulator in Throwing Motion
,”
Artif. Life Rob.
,
11
, pp.
61
66
.10.1007/s10015-006-0401-0
24.
Agrawal
,
S. K.
,
Gardner
,
G.
, and
Pledgie
,
S.
,
2001
, “
Design and Fabrication of an Active Gravity Balanced Planar Mechanism Using Auxiliary Parallelograms
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
525
528
.10.1115/1.1413771
25.
Agrawal
,
S. K.
, and
Fattah
,
A.
,
2004
, “
Gravity-Balancing of Spatial Robotic Manipulators
,”
Mech. Mach. Theory
,
39
(
12
), pp.
1331
1344
.10.1016/j.mechmachtheory.2004.05.019
26.
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2006
, “
Gravity-Balancing of Classes of Industrial Robots
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation
.
27.
Tepper
,
F. R.
, and
Lowen
,
G. G.
,
1972
, “
General Theorems Concerning Full Force Balancing of Planar Linkages by Internal Mass Redistribution
,”
ASME J. Eng. Ind.
,
94
, pp.
789
796
.10.1115/1.3428252
28.
Chung
,
W. K.
, and
Cho
,
H. S.
,
1987
, “
On the Dynamics and Control of Robotic Manipulators with an Automatic Balancing Mechanism
,”
Proc. Inst. Mech. Eng., Part B (Manage. Eng. Manuf.)
,
201
(
12
), pp.
25
34
.10.1243/PIME_PROC_1987_201_041_02
29.
Lim
,
T. G.
,
Cho
,
H. S.
, and
Chung
,
W. K.
,
1990
, “
Payload Capacity of Balanced Robotic Manipulators
,”
Robotica
,
8
(
2
), pp.
117
123
.10.1017/S0263574700007682
30.
Coello
,
C. A.
,
Christiansen
,
A. D.
, and
Aguirre
,
A. H.
,
1998
, “
Using a New GA-Based Multiobjective Optimization Technique for the Design of Robot Arms
,”
Robotica
,
16
(
4
), pp.
401
414
.10.1017/S0263574798000034
31.
Ravichandran
,
T.
,
Wang
,
D.
, and
Heppler
,
G.
,
2006
, “
Simultaneous Plant-Controller Design Optimization of a Two-Link Planar Manipulator
,”
Mechatronics
,
16
(
3-4
), pp.
233
242
.10.1016/j.mechatronics.2005.09.008
32.
van der Wijk
,
V.
, and
Herder
,
J. L.
,
2009
, “
Synthesis of Dynamically Balanced Mechanisms by Using Counter-Rotary Countermass Balanced Double Pendula
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111003
.10.1115/1.3179150
33.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
(
2
), pp.
62
82
.10.1177/027836499000900206
34.
Collins
,
S.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.10.1126/science.1107799
35.
Smith
,
M. J.
,
Grigoriadis
,
K. M.
, and
Skelton
,
R. E.
,
1991
, “
The Optimal Mix of Passive and Active Control in Structures
,”
Proceedings of the 1991 American Control Conference, IEEE
, pp.
1459
1464
.
36.
Williamson
,
M. M.
,
2003
, “
Oscillators and Crank Turning: Exploiting Natural Dynamics With a Humanoid Robot Arm
,”
Philos. Trans. R. Soc. London
,
361
(
1811
), pp.
2207
2223
.10.1098/rsta.2003.1272
37.
Park
,
J. H.
, and
Asada
,
H.
,
1994
, “
Concurrent Design Optimization of Mechanical Structure and Control for High Speed Robots
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
3
), pp.
344
356
.10.1115/1.2899229
38.
Giffin
,
M.
,
de Weck
,
O.
,
Bounova
,
G.
,
Keller
,
R.
,
Eckert
,
C.
, and
Clarkson
,
P. J.
,
2009
, “
Change Propagation Analysis in Complex Technical Systems
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081001
.10.1115/1.3149847
39.
Siddiqi
,
A.
,
Bounova
,
G.
,
de Weck
,
O. L.
,
Keller
,
R.
, and
Robinson
,
B.
,
2011
, “
A Posteriori Design Change Analysis for Complex Engineering Projects
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101005
.10.1115/1.4004379
40.
Allison
,
J. T.
, and
Nazari
,
S.
,
2010
, “
Combined Plant and Controller Design Using Decomposition-Based Design Optimization and the Minimum Principle
,”
Proceedings of the 2010 ASME Design Engineering Technical Conference
, Paper No. DETC2010-28887.
41.
Antoulas
,
A. C.
,
2005
,
Approximation of Large-Scale Dynamical Systems
,
SIAM
,
Philadelphia, PA
.
42.
Papalambros
,
P. Y.
, and
Wilde
,
D.
,
2000
,
Principles of Optimal Design: Modeling and Computation
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
43.
Philpott
,
M. L.
,
Warrington
,
C. S.
,
Branstad
,
E. A.
,
David
,
R.
, and
Nita
,
R. P.
,
1996
, “
A Parametric Contract Modeler for DFM Analysis
,”
J. Manuf. Syst.
,
15
(
4
), pp.
256
267
.10.1016/0278-6125(96)84551-1
44.
Boothroyd
,
G.
, and
Dewhurst
,
P.
,
2010
,
Product Design for Manufacture and Assembly
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
45.
Allison
,
J. T.
,
2012
, “
Simulation and Limited Redesign of a Counterbalanced Two Link Robotic Manipulator
,” http://www.mathworks.com/matlabcentral/fileexchange/37665
46.
Allison
,
J. T.
, and
Han
,
Z.
,
2011
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
Proceedings of the 2011 ASME Design Engineering Technical Conference
, Paper No. DETC2011-48521.
47.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2013
, “
Design of Nonlinear Dynamic Systems using Surrogate Models of Derivative Functions
,”
Proceedings of the 2013 ASME Design Engineering Technical Conference
, Paper No. DETC2013-12262.
48.
Arai
,
H.
, and
Tachi
,
S.
,
1991
, “
Position Control of a Manipulator With Passive Joints Using Dynamic Coupling
,”
IEEE Trans. Rob. Autom.
,
7
(
4
), pp.
528
534
.10.1109/70.86082
49.
Harper
,
S. R.
, and
Thurston
,
D. L.
,
2008
, “
Incorporating Environmental Impacts in Strategic Redesign of an Engineered System
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031101
.10.1115/1.2829858
You do not currently have access to this content.