Partially compliant mechanisms inherit the attributes of fully compliant and rigid-body linkages and offer simpler, compact design alternatives to accomplish complex kinematic tasks such as tracing large nonsmooth paths. This paper describes qualitative and quantitative criteria that can be employed to select the linkage configuration. The proposed criteria are categorized as general or specific. General criteria pertain to often-used kinematic attributes whereas specific criteria address the application at hand. The veracity and viability of each mechanism are evaluated with respect to compactness, design simplicity, static and dynamic failure, number of rigid-body joints, relative ease of fabrication, and other relevant criteria. Three decision-making techniques, namely, Pugh decision matrix, analytic hierarchy process, and a variant of the Pugh decision matrix are used to perform the evaluation. An example of a displacement-delimited gripper with a prescribed large nonsmooth path is used to illustrate linkage selection.

References

1.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
, 2009, “
Unified Synthesis of Compact Planar Path-Generating Linkages With Rigid and Deformable Members
,”
Struct. Multidiscip. Optim.
,
41
, pp.
1
17
.
2.
Kempe
,
A. B.
, 1876, “
On a General Method of Describing Plane Curves of the nth Degree by Linkwork
,”
Proc. London Math. Soc.
,
7
, pp.
213
216
.
3.
Gao
,
X.-S.
,
Zhu
,
C.-C.
,
Chou
,
S.-C.
, and
Ge
,
J.-X.
, 2001, “
Automated Generation of Kempe Linkages for Algebraic Curves and Surfaces
,”
Mech. Mach. Theory
,
36
, pp.
1019
1033
.
4.
Shoup
,
T. E.
, and
McLarnan
,
C. W.
, 1971, “
A Survey of Flexible Link Mechanisms Having Lower Pairs
,”
J. Mech.
,
6
, pp.
97
105
.
5.
Winter
,
S. J.
, and
Shoup
,
T. E.
, 1972, “
The Displacement Analysis of Path-Generating Flexible-Link Mechanisms
,”
Mech. Mach. Theory
,
7
, pp.
443
451
.
6.
Sriram
,
B. R.
, and
Mruthyunjaya
,
T. S.
, 1995, “
Synthesis of Path Generating Flexible-Link Mechanisms
,”
Comput. Struct.
,
56
(
4
), pp.
657
666
.
7.
Ramrakhyani
,
D. S.
,
Frecker
,
M. I.
, and
Lesieutre
,
G. A.
, 2009, “
Hinged Beam Elements for the Topology Design of Compliant Mechanisms Using the Ground Structure Approach
,”
Struct. Multidiscip. Optim.
,
37
(
6
), pp.
557
567
.
8.
Hunt
,
K. H.
,
Kinematic Geometry of Mechanisms
(
Oxford University
,
New York
, 1978).
9.
Erdman
,
A. G.
, and
Sandor
,
G. N.
, 1984,
Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Vol.
1
.
10.
Sandor
,
G. N.
, and
Erdman
,
A. G.
, 1984,
Advanced Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Vol.
2
.
11.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
Kinematic Synthesis of Linkages
(
McGraw-Hill
,
New York
, 1964).
12.
Artobolevskii
,
I. I.
,
Mechanisms for the Generation of Plane Curves
(
Pergamon
,
New York
, 1964).
13.
Sedlaczek
,
K.
,
Gaugele
,
T.
, and
Eberhard
,
P.
, 2005, “
Topology Optimized Synthesis of Planar Kinematic Rigid Body Mechanisms
,” Multibody Dynamics, ECCOMAS Thematic Conference, Madrid, Spain.
14.
Liu
,
Y.
, and
McPhee
,
J.
, 2007, “
Automated Kinematic Synthesis of Planar Mechanisms With Revolute Joints
,”
Mech. Based Des. Struct. Mach.
,
35
(
4
), pp.
405
445
.
15.
Kawamoto
,
A.
, 2005, “
Path-Generation of Articulated Mechanisms by Shape and Topology Variations in Non-Linear Truss Representation
,”
Int. J. Numer. Methods Eng.
,
64
, pp.
1557
1574
.
16.
Tsai
,
L.-W.
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
(
CRC
,
Boca Raton
, 2001).
17.
Chen
,
D.-Z.
, and
Pai
,
W.-M.
, 2005, “
A Methodology for Conceptual Design of Mechanisms by Parsing Design Specifications
,”
ASME J. Mech. Des.
,
127
, pp.
1039
1044
.
18.
Pucheta
,
M.
, and
Cardona
,
A.
, 2007, “
An Automated Method for Type Synthesis of Planar Linkages Based on a Constrained Subgraph Isomorphism Detection
,”
Multibody Syst. Dyn.
,
18
, pp.
233
258
.
19.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
, 2001, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integr. Circuits Signal Process.
,
29
, pp.
7
15
.
20.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2003, “
A Computational Approach to the Number Synthesis of Linkages
,”
ASME J. Mech. Des.
,
125
, pp.
110
118
.
21.
Saxena
,
A.
, 2005, “
Topology Design of Large Displacement Compliant Mechanisms With Multiple Materials and Multiple Output Ports
,”
Struct. Multidiscip. Optim.
,
30
, pp.
477
490
.
22.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
,
127
, pp.
745
752
.
23.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
, 2007, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
,
129
, pp.
1056
1063
.
24.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Gianchandani
,
Y.
, 1994, “
A Methodical Approach to the Design of Compliant Micro-Mechanisms
,”
Technical Digest, Solid-State Sensor and Actuator Workshop, June 13–16, Transducers Research Foundation, Inc., Hilton Head Island, South Carolina
, pp.
189
192
.
25.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
, pp.
535
559
.
26.
Pederson
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
2683
2705
.
27.
Rahmatalla
,
S.
, and
Swan
,
C. C.
, 2005, “
Sparce Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Methods Eng..
,
62
, pp.
1579
1605
.
28.
Saxena
,
A.
, 2008, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
,
130
,
082304
.
29.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modeling
,”
Comput. Struct.
,
82
, pp.
1267
1290
.
30.
Pucheta
,
M. A.
, and
Cardona
,
A.
, 2010, “
Design of Bistable Compliant Mechanisms Using Precision-Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
, pp.
304
326
.
31.
Howell
,
L. L.
,
Compliant Mechanisms
(
Wiley
,
New York
, 2001).
32.
Sardain
,
P.
, 1997, “
Linkage synthesis: Topology Selection Fixed by Dimensional Constraints, Study of an Example
,”
Mech. Mach. Theory
,
32
(
1
), pp.
91
102
.
33.
Pucheta
,
M. A.
, and
Cardona
,
A.
, 2009, “
Automated Classification of Synthesized Linkage Mechanisms
,” Asociación Argentina de MecánicaComputacional, XXVIII, pp.
3241
3250
.
34.
Board on Manufacturing and Engineering Design, 2001, “Theoretical foundations for decision making in engineering design,” (National Academy Press, Washington D.C.).
35.
Bhushan
,
N.
, and
Rai
,
K.
,
Strategic Decision Making—Applying the Analytic Hierarchy Process
(
Springer–Verlag
,
Berlin
, 2004).
36.
Obaidat
,
W.
, and
Dwairi
,
A.
, “
Concept Evaluation and Selection
,” accessed at http://www.slideshare.net/QRCE/concept-evaluation-and-selection-presentationhttp://www.slideshare.net/QRCE/concept-evaluation-and-selection-presentation, Last accessed on June 10, 2010.
38.
Process
MA
, “
Pugh matrix
,” accessed at http://www.processma.com/resource/pugh_matrix.htmhttp://www.processma.com/resource/pugh_matrix.htm, Last accessed on June 10, 2010.
39.
Murphy
,
M. D.
,
Midha
,
A.
, and
Howell
,
L. L.
, 1994, “
On the Mobility of Compliant Mechanisms
,”
23rd ASME Biennial Mechanisms Conference on Machine Elements and Machine Dynamics
, DE-Vol.
71
, pp.
475
479
.
40.
Murphy
,
M. D.
,
Midha
,
A.
, and
Howell
,
L. L.
, 1994, “
The Topological Analysis of Compliant Mechanisms
,”
23rd ASME Biennial Mechanisms Conference on Machine Elements and Machine Dynamics
, DE-Vol.
71
, pp.
481
489
.
41.
Murphy
,
M. D.
,
Midha
,
A.
, and
Howell
,
L. L.
, 1994, “
Type Synthesis of Compliant Mechanisms Employing a Simplified Approach to Segment Type
,”
23rd ASME Biennial Mechanisms Conference on Mechanism Synthesis and Analysis
, DE-Vol.
70
, pp.
51
60
.
42.
Murphy
,
M. D.
,
Midha
,
A.
, and
Howell
,
L. L.
, 1994, “
Methodology for the Design of Compliant Mechanisms Employing Type Synthesis Techniques With Example
,”
23rd ASME Biennial Mechanisms Conference on Mechanism Synthesis and Analysis
, DE-Vol.
70
, pp.
61
66
.
43.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Determination of the Degrees of Freedom of Compliant Mechanisms Using the Pseudo-Rigid-Body Model Concept
,”
Proceedings of the Ninth world Congress on the Theory of Machines and Mechanisms
, Milano, Italy, Vol.
2
, pp.
1537
1541
.
44.
Ananthasuresh
,
G. K.
, and
Howell
,
L. L.
, 1996, “
Case Studies and a Note on the Degrees-of-Freedom in Compliant Mechanisms
,” Proceedings of the 1996 ASME Mechanisms Conference, Paper No. 96-DETC/MECH-1217.
45.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2007, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
,
69
, pp.
2564
2605
.
46.
Li
,
D.
,
Zhang
,
Z.
, and
McCarthy
,
J. M.
, 2011, “
A Constraint Graph Representation of Metamorphic Linkages
,”
Mech. Mach. Theory
,
46
, pp.
228
238
.
47.
Li
,
D.
,
Zhang
,
Z.
, and
Chen
,
G.
, 2011, “
Structural Synthesis of Compliant Metamorphic Mechanisms Based on the Adjacency Matrix Operations
,”
Chin. J. Mech. Eng.
Vol.
24
, No. 4, pp.
1
7
.
You do not currently have access to this content.