Abstract

In this research, we investigate design optimization under uncertainties for problems with two objectives. Reliability-based design optimization (RBDO) that considers uncertainties as random variables and/or parameters and formulates constraints probabilistically has received extensive attention. However, research to date has focused primarily on single-objective problems only. We extend RBDO to problems for which multiple objectives are optimized simultaneously. Each constraint reliability value results in a Pareto set. The set of all Pareto frontiers at the various reliability values is denoted as the β-Pareto set. We study the relations between the deterministic Pareto set and the β-Pareto set and then develop a method to systematically determine the exact β-Pareto set of bi-objective linear programming problems. The method is also extended to predict the β-Pareto set of nonlinear problems using the sandwich technique. As a result, we are able to accurately predict the β-Pareto set in the objective space without solving multiple multi-objective optimization problems at various reliability levels. In the early stage of the product design process, the proposed approach can help decision-makers efficiently to determine how product performance varies with reliability level.

References

1.
Li
,
Z.
,
Izquierdo
,
L.
,
Kokkolaras
,
M.
,
Hu
,
J.
, and
Papalambros
,
P.
, 2008, “
Multiobjective Optimization for Integrated Tolerance Allocation and Fixture Layout Design in Multistation Assembly
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
044501
.
2.
Li
,
Z.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Hu
,
J.
, 2005, “
An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design With Emphasis on Emissions
,” SAE Paper, 2004–01–1560.
3.
Levi
,
F.
,
Gobbi
,
M.
, and
Mastinu
,
G.
, 2005, “
An Application of Multi-Objective Stochastic Optimisation to Structural Design
,”
Struct. Multidiscip. Optim.
,
29
(
4
), pp.
272
284
.
4.
Singh
,
A.
, and
Minsker
,
B.
, 2008, “
Uncertainty-Based Multiobjective Optimization of Groundwater Remediation Design
,”
Water Resour. Res.
,
44
(
2
), pp.
1
20
.
5.
Caballero
,
R.
,
Cerda
,
E.
,
Munoz
,
M.
,
Rey
,
L.
, and
Stancu-Minasian
,
I.
, 2001, “
Efficient Solution Concepts and Their Relations in Stochastic Multiobjective Programming
,”
J. Optim. Theory Appl.
,
110
(
1
), pp.
53
74
.
6.
Caballero
,
R.
,
Cerda
,
E.
,
Munoz
,
M.
, and
Rey
,
L.
, 2004, “
Stochastic Approach Versus Multiobjective Approach for Obtaining Efficient Solutions in Stochastic Multiobjective Programming Problems
,”
Eur. J. Oper. Res.
,
158
(
3
), pp.
633
648
.
7.
Ben-Abdelaziz
,
F.
,
Lang
,
P.
, and
Nadeau
,
R.
, 1995, “
Distributional Efficiency in Multiobjective Stochastic Linear Programming
,”
Eur. J. Oper. Res.
,
85
, pp.
399
415
.
8.
Rommelfanger
,
H.
, 2007, “
A General Concept for Solving Linear Multicriteria Programming Problems With Crisp, Fuzzy or Stochastic Values
,”
Fuzzy Sets Syst.
,
158
(
14
), pp.
1892
1904
.
9.
Tonon
,
F.
,
Mammino
,
A.
, and
Bernardini
,
A.
, 2002, “
Multiobjective Optimization Under Uncertainty in Tunneling: Application to the Design of Tunnel Support/Reinforcement With Case Histories
,”
Tunnelling Underground Space Technol.
,
17
, pp.
33
54
.
10.
Gass
,
S.
, and
Saaty
,
T.
, 1955, “
The Computational Algorithm for the Parametric Objective Function
,”
Nav. Res. Logistics Quart.
,
2
,
p.
39
.
11.
Marglin
,
S.
, 1967,
Public Investment Criteria,
MIT
,
Cambridge, MA
.
12.
Dauer
,
J.
, and
Liu
,
Y.
, 1990, “
Solving Multiple Objective Linear Programs in Objective Space
,”
Eur. J. Oper. Res.
,
46
(
3
), pp.
350
357
.
13.
Wets
,
R.
, and
Witzgall
,
C.
, 1967, “
Algorithms for Frames and Lineality Spaces of Cones
,”
J. Res. Natl. Bur. Stand.
,
71B
(
1
), pp.
1
7
.
14.
Chan
,
K.-Y.
,
Skerlos
,
S.
, and
Papalambros
,
P.
, 2007, “
An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems With Probabilistic Constraints
,”
ASME J. Mech. Des.
,
29
(
2
), pp.
140
149
.
15.
Yang
,
X.
, and
Goh
,
C.
, 1997, “
A Method for Convex Curve Approximation
,”
Eur. J. Oper. Res.
,
97
, pp.
205
212.
16.
Gu
,
L.
,
Yang
,
R.-J.
,
Tho
,
C.
,
Makowski
,
M.
,
Faruque
,
O.
, and
Li
,
Y.
, 2001, “
Optimization and Robustness for Crashworthiness of Side Impact
,”
Int. J. Veh. Des.
,
26
(
4
), pp.
348
360
.
17.
Sinha
,
K.
, 2007, “
Reliability-Based Multiobjective Optimization for Automotive Crashworthiness and Occupant Safety
,”
Struct. Multidiscip. Optim.
,
33
(
3
), pp.
255
268
.
18.
Fletcher
,
R.
, 1987,
Practical Methods of Optimization
, 2nd ed.,
John Wiley & Sons
,
New York.
19.
Papalambros
,
P.
, and
Wilde
,
D.
, 2000,
Principles of Optimal Design
, 2nd ed.,
Cambridge University Press
,
New York.
20.
Pomrehn
,
L.
, and
Papalambros
,
P.
, 1994, “
Global and Discrete Constraint Activity
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
745
748
.
You do not currently have access to this content.