This paper proposes a system optimization method for product designs incorporating discrete design variables, in which hierarchical product optimization methodologies are constructed based on decomposition of characteristics and/or extraction of simpler characteristics from original characteristics. The method is constructed to take advantage of hierarchical optimization procedures, enabling the incorporation of discrete design variables. The proposed method can be applied to machine product designs that include discrete design variables such as material types, machining methods, standard material forms, and specifications. The optimizations begin at the lowest levels of the hierarchical optimization structure and proceed to the higher levels. Discrete design variables are efficiently selected and optimized in the form of small suboptimization problems at the lowest hierarchical levels, and optimum solutions for the entire problem are ultimately obtained using conventional mathematical programming methods. Practical optimization procedures for machine product optimization problems that include several types of discrete design variables are constructed, and applied examples are provided to demonstrate their effectiveness.

1.
Land
,
A. M.
, and
Doig
,
A. G.
, 1960, “
An Automatic Method of Solving Discrete Programming Problems
,”
Econometrica
0012-9682,
28
, pp.
497
520
.
2.
Dakin
,
R. J.
, 1965, “
A Tree-Search Algorithm for Mixed Integer Programming Problems
,”
Comput. J.
0010-4620,
8
, pp.
250
255
.
3.
Hajela
,
P.
, and
Shih
,
C. J.
, 1989, “
Optimal Design of Laminated Composites Using a Modified Mixed Integer and Discrete Programming Algorithm
,”
Comput. Struct.
0045-7949,
32
, pp.
213
221
.
4.
Sandgren
,
E.
, 1990, “
Nonlinear Integer and Discrete Programming in Mechanical Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
112
, pp.
223
229
.
5.
Salajegheh
,
E.
, and
Vanderplaats
,
G. N.
, 1993, “
Optimum Design of Trusses With Sizing and Shape Variables
,”
Struct. Optim.
0934-4373,
6
, pp.
79
85
.
6.
Doerner
,
K.
,
Gutjahr
,
W. J.
,
Kotsis
,
G.
,
Polaschek
,
M.
, and
Strauss
,
C.
, 2006, “
Enriched Workflow Modelling and Stochastic Branch-and-Bound
,”
Eur. J. Oper. Res.
,
175
(
3
), pp.
1798
1817
. 0377-2217
7.
Kim
,
T. U.
, and
Hwang
,
I. H.
, 2005, “
Optimal Design of Composite Wing Subjected to Gust Loads
,”
Comput. Struct.
,
83
(
19–20
), pp.
1546
1554
. 0045-7949
8.
Loh
,
H. T.
, and
Papalambros
,
P. Y.
, 1991, “
A Sequential Linearization Approach for Solving Mixed-Discrete Nonlinear Design Optimization Problems
,”
ASME J. Mech. Des.
0161-8458,
113
, pp.
325
334
.
9.
Loh
,
H. T.
, and
Papalambros
,
P. Y.
, 1991, “
Computational Implementation and Tests of a Sequential Linearization Algorithm for Mixed-Discrete Nonlinear Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
113
, pp.
335
344
.
10.
Grignon
,
P. M.
, and
Fadel
,
G. M.
, 2004, “
A GA Based Configuration Design Optimization Method
,”
ASME J. Mech. Des.
0161-8458,
126
(
1
), pp.
6
15
.
11.
Lin
,
C. Y.
, and
Hajela
,
P.
, 1992, “
Genetic Algorithms in Optimization Problems With Discrete and Integer Design Variables
,”
Eng. Optimiz.
,
19
, pp.
309
327
. 0305-215X
12.
Yoshimura
,
M.
, and
Izui
,
K.
, 2002, “
Smart Optimization of Machine Systems Using Hierarchical Genotype Representations
,”
ASME J. Mech. Des.
0161-8458,
124
(
3
), pp.
375
384
.
13.
Yoshimura
,
M.
, and
Izui
,
K.
, 2004, “
Hierarchical Parallel Processing of Genetic Algorithms for Design Optimization of Large-Scale Products
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
217
224
.
14.
Gantovnik
,
V. B.
,
Christine
,
M.
,
Cook
,
A.
,
Gündal
,
Z.
, and
Watson
,
L. T.
, 2003, “
A Genetic Algorithm With Memory for Mixed Discrete-Continuous Design Optimization
,”
Comput. Struct.
,
81
, pp.
2003
2009
. 0045-7949
15.
Yoshimura
,
M.
,
Nishiwaki
,
S.
, and
Izui
,
K.
, 2005, “
2A Multiple Cross-Sectional Shape Optimization Method for Automotive Body Frames
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
49
57
.
16.
Kincaid
,
R. K.
, and
Padula
,
S. L.
, 1990, “
Minimizing Distortion and Internal Forces in Truss Structures by Simulated Annealing
,” Paper No. AIAA-90-1095-CP.
17.
Luo
,
Y. Z.
, and
Tang
,
G. J.
, 2006, “
Rendezvous Phasing Special-Point Maneuvers Mixed Discrete-Continuous Optimization Using Simulated Annealing
,”
Aerosp. Sci. Technol.
,
10
(
7
), pp.
652
658
. 1270-9638
18.
Baker
,
K. R.
, 1974,
Introduction to Sequencing and Scheduling
,
Wiley
,
New York
.
19.
French
,
S.
, 1982,
Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop
,
Ellis Horwood Limited
,
Chichester
.
20.
Ragsdell
,
K. M.
, and
Phillips
,
D. T.
, 1976, “
Optimal Design of a Class of Welded Structures Using Geometric Programming
,”
ASME J. Eng. Ind.
0022-0817,
98
, pp.
1021
1025
.
21.
Rao
,
S.
, and
Ying
,
X.
, 2005, “
A Hybrid Genetic Algorithm for Mixed-Discrete Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
1100
1112
.
22.
Bremicker
,
M.
,
Papalambros
,
P. Y.
, and
Loh
,
H. T.
, 1990, “
Solution of Mixed Discrete Structural Optimization Problems With a New Sequential Linearization Algorithm
,”
Comput. Struct.
0045-7949,
37
, pp.
451
461
.
23.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
, 2007, “
Reliability Optimization With Mixed Continuous-Discrete Random Variables and Parameters
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
158
165
.
24.
Smithson
,
A. G.
,
Hamza
,
K.
, and
Saitou
,
K.
, 2007, “
Design for Existing Lines: Part and Process Plan Optimization to Best Utilize Existing Production Lines
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
2
), pp.
126
131
.
25.
AlRashidi
,
M. R.
, and
El-Hawary
,
M. E.
, 2007, “
Hybrid Particle Swarm Optimization Approach for Solving the Discrete OPF Problem Considering the Valve Loading Effects
,”
IEEE Trans. Power Syst.
,
22
(
4
), pp.
2030
2038
. 1530-9827
26.
Lian
,
Z.
,
Gu
,
X.
, and
Jiaom
,
B.
, 2008, “
A Novel Particle Swarm Optimization Algorithm for Permutation Flow-Shop Scheduling to Minimize Makespan
,”
Chaos, Solitons Fractals
,
35
(
5
), pp.
851
861
. 0960-0779
27.
Xiong
,
Y.
, and
Rao
,
S. S.
, 2005, “
Fuzzy Dynamic Programming Approach for the Mixed-Discrete Optimization of Mechanical Systems
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
1088
1099
.
28.
Farshi
,
B.
, and
Herasat
,
S.
, 2006, “
Optimum Weight Design of Fiber Composite Plates in Flexure Based on a Two Level Strategy
,”
Compos. Struct.
,
73
, pp.
495
504
. 0263-8223
29.
Stolpe
,
M.
, and
Stidsen
,
T.
, 2007, “
A Hierarchical Method for Discrete Structural Topology Design Problems With Local Stress and Displacement Constraints
,”
Int. J. Numer. Methods Eng.
0029-5981,
69
, pp.
1060
1084
.
30.
Yoshimura
,
M.
,
Itani
,
K.
, and
Hitomi
,
K.
, 1989, “
Integrated Optimization of Machine Product Design and Process Design
,”
Int. J. Prod. Res.
,
27
(
8
), pp.
1241
1256
. 0020-7543
31.
Yoshimura
,
M.
,
Taniguchi
,
M.
,
Izui
,
K.
, and
Nishiwaki
,
S.
, 2006, “
Hierarchical Arrangement of Characteristics in Product Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
701
709
.
32.
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
, 1997, “
A Hypergraph Framework for Optimal Model-Based Decomposition of Design Problems
,”
Comput. Optim. Appl.
0926-6003,
8
(
2
), pp.
173
196
.
33.
Braun
,
R. D.
,
Moore
,
A. A.
, and
Kroo
,
I. M.
, 1997, “
Collaborative Approach to Launch Vehicle Design
,”
J. Spacecr. Rockets
,
34
(
4
), pp.
478
485
. 0022-4650
34.
Sobieszczanski-Sobieski
,
J.
,
Altus
,
T. D.
,
Phillips
,
W.
, and
Sandusky
,
R.
, 2003, “
Bilevel Integrated System Synthesis for Concurrent and Distributed Processing
,”
AIAA J.
,
41
(
10
), pp.
1996
2003
. 0001-1452
35.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
481
489
.
36.
Yoshimura
,
M.
, 1987, “
Design Optimization of Machine-Tool Dynamics Based on Clarification of Competitive-Cooperative Relationships Between Characteristics
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
(
1
), pp.
143
150
.
37.
Yoshimura
,
M.
,
Takeuchi
,
Y.
, and
Hitomi
,
K.
, 1984, “
Design Optimization of Machine-Tool Structures Considering Manufacturing Cost, Accuracy and Productivity
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
(
4
), pp.
531
537
.
38.
Yoshimura
,
M.
,
Sasaki
,
K.
,
Izui
,
K.
, and
Nishiwaki
,
S.
, 2005, “
Hierarchical Multiobjective Optimization Methods for Deeper Understanding of Design Solutions and Breakthrough for Optimum Design Solution
s,”
Proceedings of the Sixth World Congress of Structural and Multidisciplinary Optimization
, Paper No.
1031
, pp.
1
9
.
You do not currently have access to this content.