This paper develops a general framework to synthesize optimal polynomial splines for rigid motion systems driven by cams or servomotors. This framework is based on numerical optimization, and has three main characteristics: (i) Spline knot locations are optimized through an indirect approach, based on providing a large number of fixed, uniformly distributed candidate knots; (ii) in order to efficiently solve the corresponding large-scale optimization problem to global optimality, only design objectives and constraints are allowed that result in convex programs; and (iii) one-norm regularization is used as an effective tool for selecting the better (that is, having fewer active knots) solution if many equally optimal solutions exist. The framework is developed and validated based on a double-dwell benchmark problem for which an analytical solution exists.

1.
Tsay
,
D.
, and
Huey
,
C.
, Jr.
, 1993, “
Application of Rational B-Splines to the Synthesis of Cam-Follower Motion Programs
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
621
626
.
2.
Tsay
,
D.
, and
Huey
,
C.
, Jr.
, 1988, “
Cam Motion Synthesis Using Spline Functions
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
161
165
.
3.
Mosier
,
R.
, 2000, “
Modern Cam Design
,”
Int. J. Veh. Des.
0143-3369,
23
(
1/2
), pp.
38
55
.
4.
Sandgren
,
E.
, and
West
,
R.
, 1989, “
Shape Optimization of Cam Profiles Using a B-Spline Representation
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
, pp.
195
201
.
5.
Neklutin
,
C. N.
, 1952, “
Designing Cams for Controlled Inertia and Acceleration
,”
Mach. Des.
0024-9114,
24
, June, pp.
143
160
.
6.
Norton
,
R.
, 2002,
Cam Design and Manufacturing Handbook
,
Industrial Press Inc.
,
New York
.
7.
Yoon
,
K.
, and
Rao
,
S.
, 1993, “
Cam Motion Synthesis Using Cubic Splines
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
441
446
.
8.
Wang
,
L.
, and
Yang
,
Y.
, 1996, “
Computer Aided Design of Cam Motion Programs
,”
Comput. Ind. Eng.
0360-8352,
28
, pp.
151
161
.
9.
Kim
,
J.
,
Ahn
,
K.
, and
Kim
,
S.
, 2002, “
Optimal Synthesis of a Spring-Actuated Cam Mechanism Using a Cubic Spline
,”
J. Mech. Eng. Sci.
0022-2542,
216
, pp.
875
883
.
10.
Mermelstein
,
S.
, and
Acar
,
M.
, 2004, “
Optimising Cam Motion Using Piecewise Polynomials
,”
Eng. Comput.
0177-0667,
19
, pp.
241
254
.
11.
Qiu
,
H.
,
Lin
,
C. -J.
,
Li
,
Z. -Y.
,
Ozaki
,
H.
,
Wang
,
J.
, and
Yue
,
Y.
, 2005, “
A Universal Optimal Approach to Cam Curve Design and Its Applications
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
669
692
.
12.
Hartwig
,
K. -H.
, 2006. “
Kurvengetriebe zur steuerung des ladungswechsels in verbrennungsmotoren (Cam Mechanisms That Drive the Charge Cycle in Combustion Engines)
,”
Proceedings of the VDI-Getriebetagung 2006, VDI-Berichte 1966
, Fulda, Germany, pp.
29
43
.
13.
Nguyen
,
V.
, and
Kim
,
D.
, 2007, “
Flexible Cam Profile Synthesis Method Using Smoothing Spline Curves
,”
Mech. Mach. Theory
0094-114X,
42
, pp.
825
838
.
14.
Rockafellar
,
R.
, 1993, “
Lagrange Multipliers and Duality
,”
SIAM Rev.
0036-1445,
35
, pp.
183
283
.
15.
Demeulenaere
,
B.
,
De Caigny
,
J.
,
Swevers
,
J.
, and
De Schutter
,
J.
, “
Optimal Splines for Rigid Motion Systems: Benchmarking and Extensions
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
101005
.
16.
Dierckx
,
P.
, 1993,
Curve and Surface Fitting With Splines
,
Oxford University Press
,
New York
.
17.
Boyd
,
S.
, and
Vandenberghe
,
L.
, 2004,
Convex Optimization
,
Cambridge University Press
,
Cambridge
.
18.
Kwakernaak
,
H.
, and
Smit
,
J.
, 1968, “
Minimum Vibration Cam Profiles
,”
J. Mech. Eng. Sci.
0022-2542,
10
, pp.
219
227
.
19.
Van de Straete
,
H. J.
, and
De Schutter
,
J.
, 1999, “
Optimal Variable Transmission Ratio and Trajectory for an Inertial Load With Respect to Servo Motor Size
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
544
551
.
20.
Sturm
,
J.
, 1999, “
Using SEDUMI 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
1055-6788,
11–12
, pp.
625
653
.
21.
Tutuncu
,
R.
,
Toh
,
K.
, and
Todd
,
M.
, 2003, “
Solving Semidefinite-Quadratic-Linear Programs Using SDPT3
,”
Math. Program. Ser. B
0025-5610,
95
, pp.
189
217
.
22.
Demeulenaere
,
B.
,
De Caigny
,
J.
,
Swevers
,
J.
, and
De Schutter
,
J.
, 2007, “
Dynamically Compensated and Robust Motion System Inputs Based on Splines: A Linear Programming Approach
,”
Proceedings of the American Control Conference
, pp.
5011
5018
.
23.
Chen
,
S.
,
Donoho
,
D.
, and
Saunders
,
M.
, 1998, “
Atomic Decomposition by Basis Pursuit
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
20
(
1
), pp.
33
61
.
24.
Candès
,
E.
, and
Wakin
,
M.
, 2008, “
An Introduction to Compressive Sampling
,”
IEEE Signal Process. Mag.
1053-5888,
25
(
2
), pp.
21
30
.
25.
Rudin
,
L.
,
Osher
,
S. J.
, and
Fatemi
,
E.
, 1992, “
Nonlinear Total Variation Based Noise Removal Algorithms
,”
Physica D
0167-2789,
60
, pp.
259
268
.
26.
Betts
,
J.
, 2001,
Practical Methods for Optimal Control Using Nonlinear Programming
,
SIAM
,
Philadelphia, PA
.
You do not currently have access to this content.