Currently, there is an increased interest in the application of microelectromechanical system (MEMS) gear drives. Additionally, requirements for transmitted power and related reliability issues have increased. Reliability issues often occur due to uncertainties of material, geometry, and loading conditions of the MEMS gears. Asymmetric gear teeth are used to improve the performance of gears by increasing the load capacity or by reducing vibrations. In this paper, asymmetric gear teeth are proposed for MEMS applications. The objective of this research is to investigate the feasibility of applying asymmetric gears for MEMS devices while accounting for uncertainty. The Weibull failure theory was applied to four different MEMS gear configurations. The following analyses were carried out in this research: (i) for the calculation of root stress, four different asymmetric gears were used; (ii) for the calculation of the probability of failure, the Weibull failure theory formulization was used, and (iii) the efficacy of the various asymmetric tooth configurations was discussed. Specifically, the probability of failure of the asymmetric gear was extracted for various parameters. The parameters considered included pressure angle, tooth height, and contact ratio. The efficacy of using asymmetric gear teeth was shown in this study.

1.
Legtenberg
,
R.
,
Berenschot
,
E.
,
Elwenspoek
,
M.
, and
Fluitman
,
J.
, 1996, “
Electrostatic Microactuators With Integrated Gear Linkages For Mechanical Power Transmission
,”
Proceedings of Ninth Annual International Workshop on Micro Electro Mechanical Systems
,
San Diego, CA
, pp.
204
209
.
2.
Fu
,
K.
,
Knobloch
,
A. J.
,
Martinez
,
F. C.
,
Walther
,
D. C.
,
Fernandez-Pello
,
C.
,
Pisano
,
A. P.
, and
Liepmann
,
D.
, 2001, “
Design and Fabrication of a Silicon-Based MEMS Rotary Engine
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
,
New York
, Vol.
3
, pp.
875
880
.
3.
Sadeghi-Makki
,
B.
,
Ghafouri-Fard
,
M. R.
,
Mohajerzadeh
,
S.
,
Maleki
,
T.
,
Mohammadi
,
S.
,
Miri
,
M.
, and
Soleimani
,
E. A.
, 2004, “
A Novel Ultra-Violet Assisted Anisotropic Etching of Plastic to Realize Micro-Gears
,”
Sens. Actuators, A
0924-4247,
115
(
2–3
), pp.
563
570
.
4.
Williams
,
J. A.
, 2001, “
Friction and Wear of Rotating Pivots in MEMS and Other Small Scale Devices
,”
Wear
0043-1648,
250–251
(
2
), pp.
965
972
.
5.
Tanner
,
D. M.
,
Swanson
,
S. E.
,
Walraven
,
J. A.
, and
Dohner
,
J. L.
, 2003, “
On-Chip Monitoring of MEMS Gear Motion
,”
Proceedings of 41st Annual Reliability Physics Symposium
,
Dallas, TX
, pp.
484
490
.
6.
Kapelevich
,
A.
, 2000, “
Geometry and Design of Involute Spur Gears With Asymmetric Teeth
,”
Mech. Mach. Theory
0094-114X,
35
(
1
), pp.
117
130
.
7.
Litvin
,
F. L.
,
Lian
,
Q.
, and
Kapelevich
,
A. L.
, 2000, “
Asymmetric Modified Spur Gear Drives: Reduction of Noise, Localization of Contact, Simulation of Meshing and Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
188
(
1
), pp.
363
390
.
8.
Cavdar
,
K.
,
Karpat
,
F.
, and
Babalik
,
F. C.
, 2005, “
Computer Aided Analysis of Bending Strength of Involute Spur Gears With Asymmetric Profile
,”
ASME J. Mech. Des.
1050-0472,
127
(
3
), pp.
477
484
.
9.
Yang
,
S.-C.
, 2005, “
Mathematical Model of a Helical Gear With Asymmetric Involute Teeth and Its Analysis
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
26
(
5
), pp.
448
456
.
10.
Brecher
,
C.
, and
Schafer
,
J.
, 2005, “
Potentials of Asymmetric Tooth Geometries for the Optimisation of Involute Cylindrical Gears
,” VDI Berichte No. 1904 I, pp.
705
720
.
11.
Karpat
,
F.
,
Cavdar
,
K.
, and
Babalik
,
F. C.
, 2005, “
Computer Aided Analysis of Involute Spur Gears With Asymmetric Teeth
,” VDI Berichte 1904 I, pp.
145
163
.
12.
Di Francesco
,
G.
, and
Marini
,
S.
, 2005, “
Asymmetrical Gear Wheels: Automatized Procedure for the Design
,” VDI Berichte 1904 II, pp.
1735
1742
.
13.
Chen
,
K. S.
, and
Ou
,
K. S.
, 2004, “
Equivalent Strengths for Reliability Assessment of MEMS Structures
,”
Sens. Actuators, A
0924-4247,
112
(
1
), pp.
163
174
.
14.
Albers
,
A.
,
Burkardt
,
N.
, and
Marz
,
J.
, 2003, “
Restrictions in the Design of Gear Wheel Components and Drives for Micro Technology
,”
Microsyst. Technol.
0946-7076,
9
(
3
), pp.
192
196
.
15.
Deutsches Institut für Normung
, “
Tragfähigkeitsberechnung von Stirnrädern: Einführung und Allgemeine Einflussfaktoren
,” DIN Standard No. DIN 3990.
16.
International Organization for Standardization
, “
Calculation of Load Capacity of Spur and Helical Gears
,” ISO Standard No. ISO 6336∕TC 60.
17.
Kawalec
,
A.
,
Wiktor
,
J.
, and
Ceglarek
,
D.
, 2006, “
Comparative Analysis of Tooth-Root Strength Using ISO and AGMA Standards in Spur and Helical Gears With FEM-Based Verification
,”
ASME J. Mech. Des.
1050-0472,
128
(
5
), pp.
1141
1158
.
18.
Spitas
,
V. A.
,
Costopoulos
,
T. N.
, and
Spitas
,
C. A.
, 2006, “
Optimum Gear Tooth Geometry for Minimum Fillet Stress Using BEM and Experimental Verification With Photoelasticity
,”
ASME J. Mech. Des.
1050-0472,
128
(
5
), pp.
1159
1164
.
19.
Tayebi
,
N.
,
Tayebi
,
A. K.
, and
Belkacemi
,
Y.
, 1999, “
Numerical Tools for Fracture of MEMS Devices
,”
Proceedings of Ninth Great Lakes Symposium on VLSI
,
Ann Arbor, MI
, pp.
274
277
.
20.
Dortmans
,
L.
,
Thiemeier
,
T.
,
Brückner-Foit
,
A.
, and
Smart
,
J.
, 1993, “
Welfep: A Round Robin for Weakest-Link Finite Element Postprocessors
,”
J. Eur. Ceram. Soc.
0955-2219,
11
(
1
), pp.
17
22
.
21.
Deutsches Institut für Normung
, 1986, “
Basic Rack Tooth Profiles for Involute Teeth of Cylindrical Gears for General Engineering and Heavy Engineering
,” DIN Standard No. DIN 867.
22.
Sandia National Laboratories
, “
Sandia Ultra-Planar, Multilevel MEMS Technology (SUMMiT) Overview
,” 2007 (www.mems.sandia.govwww.mems.sandia.gov).
23.
Sharpe
,
W. N.
,
Jackson
,
K. M.
,
Hemker
,
K. J.
, and
Xie
,
Z. L.
, 2001, “
Effect of Specimen Size on Young’s Modulus and Fracture Strength of Polysilicon
,”
J. Microelectromech. Syst.
1057-7157,
10
(
3
), pp.
317
326
.
24.
Bagdahn
,
J.
,
Sharpe
,
W. N.
, and
Jadaan
,
O.
, 2003, “
Fracture Strength of Polysilicon at Stress Concentrations
,”
J. Microelectromech. Syst.
1057-7157,
12
(
3
), pp.
302
312
.
You do not currently have access to this content.