The objective of the present work is to determine the conditions that have to be satisfied for a planetary gear train of one degree of freedom to be self-locking. All planetary gear trains of up to six members are considered. As a result, we show the constructional solutions of planetary gear trains exhibiting self-locking. Unlike other studies, the self-locking conditions are obtained systematically from the analytical expression for the product of the efficiency of a given train by the efficiency of the train resulting from interchanging its input and output axes. Finally, a proof is given of an approximate relationship between these two efficiencies.

1.
Tuplin
,
W. A.
, 1964, “
The Limitations of Epicyclic Gears
,”
Mach. Des.
0024-9114,
30
, pp.
124
126
.
2.
Müller
,
H. W.
, 1982,
Epicyclic Drive Trains, Analysis, Synthesis, and Applications
,
Wayne State University Press
, Detroit, MI.
3.
Oledzki
,
A. A.
, 1969, “
Dynamics of Permanent Self-Locking Systems
,”
J. Mech.
0022-2569,
4
, pp.
105
128
.
4.
Oledzki
,
A. A.
, 1995, “
Modeling and Simulation of Self-Locking Drives
,”
Mech. Mach. Theory
0094-114X,
30
, pp.
929
942
.
5.
Klein
,
B.
, 1984, “
Grenzbereiche für Selbsthemmende Planetengetriebe
,”
Verein Deuthscher Ingenieure Zeitschrift
,
126
, pp.
221
231
.
6.
Bouché
,
B.
, 1988, “
Selbsthemmende Planetengetriebe
,”
Verein Deuthscher Ingenieure Zeitschrift
,
672
, pp.
141
161
.
7.
Macmillan
,
R. H.
, 1961, “
Power Flow and Loss in Differential Mechanisms
,”
J. Mech. Eng. Sci.
0022-2542,
3
, pp.
37
41
.
8.
Radzimovsky
,
E. I.
, 1956, “
A Simplified Approach for Determining Power Losses and Efficiencies of Planetary Gear Drives
,”
Mach. Des.
0024-9114,
9
, pp.
101
110
.
9.
Pennestri
,
E.
, and
Freudenstein
,
F.
, 1993, “
The Mechanical Efficiency of Planetary Gear Trains
,”
ASME J. Mech. Des.
1050-0472
115
, pp.
645
651
.
10.
Tian
,
L.
, and
Qiao
,
L.
, 1997, “
Matrix System for the Analysis of Planetary Transmissions
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
333
337
.
11.
Mathis
,
R.
, and
Remond
,
Y.
, 1999, “
A New Approach to Solving the Inverse Problem for Compound Gear Trains
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
98
106
.
12.
Del Castillo
,
J. M.
, 2002, “
The Analytical Expression of the Efficiency of Planetary Gear Trains
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
197
214
.
13.
Pennestri
,
E.
, and
Valentini
,
P. P.
, 2003, “
A Review of Formulas for the Mechanical Efficiency Analysis of Two Degrees-of-Freedom Epicyclic Gear Trains
,”
ASME J. Mech. Des.
1050-0472
125
(
3
), pp.
602
608
.
14.
Del Castillo
,
J. M.
, 2002, “
Enumeration of 1-DOF Planetary Gear Trains Graphs Based on Functional Constraints
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
723
732
.
15.
Anderson
,
N. E.
, and
Loewenthal
,
S. H.
, 1980, “
Spur Gear System Efficiency at Part and Full Load
,” Technical Report 79-46. NASA Technical Paper 1622.
16.
Diab
,
Y.
,
Ville
,
F.
, and
Velex
,
P.
, 2006, “
Prediction of Power Losses Due to Tooth Friction in Gears
,”
Tribol. Trans.
1040-2004,
49
, pp.
266
276
.
17.
Xu
,
H.
, and
Kahraman
,
A.
, 2005, “
A Frictional Efficiency Model for Helical Gears
,” ASME Power Transmission and Gearing Conference, Paper No. DETC2005-85243, Long Beach, California, September 24-28.
18.
Salgado
,
D. R.
, and
Del Castillo
,
J. M.
, 2005, “
Selection and Design of Planetary Gear Trains Based on Power Flow Maps
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
120
134
.
You do not currently have access to this content.