A method for the synthesis of four-bar mechanisms to generate closed paths through shape optimization is herein introduced. The objective function is not based on Fourier descriptors, but rather on the cyclic angular deviation (CAD) vector associated with a set of desired points on the curve. A simple method is introduced to account for the starting point shift between the desired CAD and the generated one. Following shape optimization, a simple mathematical approach is devised to properly scale, rotate, and translate the mechanism to the desired configuration. Two case studies are presented to demonstrate the effectiveness and robustness of the proposed method.
Issue Section:
Research Papers
1.
Sandor
, G.
, and Erdman
, A.
, 1984, Advanced Mechanism Design: Analysis and Synthesis
, Prentice-Hall
, Englewood Cliffs, NJ.2.
Nolle
, H.
, and Hunt
, K.
, 1971, “Optimum Synthesis of Planar Linkages to Generate Coupler Curves
,” J. Mech.
0022-2569, 6
(3
), pp. 267
–287
.3.
Fox
, R. L.
, and Gupta
, K. C.
, 1973, “Optimization Technology as Applied to Mechanism Design
,” ASME J. Eng. Ind.
0022-0817, 95
, pp. 657
–663
.4.
Bagci
, C.
, and In-Ping
, J. L.
, 1975, “Optimum Synthesis of Plane Mechanism for the Generation of Paths and Rigid-Body Positions via the Linear Superposition Technique
,” ASME J. Eng. Ind.
0022-0817, pp. 340
–346
.5.
Bagci
, C.
, 1976, “Optimum Synthesis of Planar Function Generators by the Linear Partition of the Dyadic Loop Equations
,” Mech. Mach. Theory
0094-114X, 11
, pp. 33
–46
.6.
Paradis
, M. J.
, and Wilmert
, K. D.
, 1983, “Optimal Mechanism Design Using the Gauss Constrained Method
,” ASME J. Mech., Transm., Autom. Des.
0738-0666, 105
, pp. 187
–196
.7.
Cossalter
, V.
, Doria
, A.
, Pasini
, M.
, and Scattlo
, C.
, 1992, “Simple Numerical Approach for Optimum Synthesis of a Class of Planar Mechanisms
,” Mech. Mach. Theory
0094-114X, 27
(3
), pp. 357
–366
.8.
Angeles
, J.
, Alivizatos
, A.
, and Akhras
, A.
, 1998, “Unconstrained Non-linear Least Square Method of Optimization of Four-Bar Planar Path Generators
,” Mech. Mach. Theory
0094-114X, 23
(5
), pp. 343
–353
.9.
Yao
, J.
, and Angeles
, J.
, 2000, “Computation of All Optimum Dyads in the Approximate Synthesis of Planar Linkages for Rigid-Body Guidance
,” Mech. Mach. Theory
0094-114X, 35
(8
), pp. 1065
–1078
.10.
Jovanovic
, V.
, and Kazerounian
, K.
, 2000, “Optimal Design Using Chaotic Descent Method
,” ASME J. Mech. Des.
1050-0472, 122
(3
), pp. 265
–270
.11.
Nokleby
, S. B.
, and Podhorodeski
, R. P.
, 2001, “Optimization-Based Synthesis of Grashof’s Geared Five-Bar Mechanisms
,” ASME J. Mech. Des.
1050-0472, 123
(4
), pp. 529
–534
.12.
Sancibrian
, R.
, Viadero
, F.
, Garcoa
, P.
, and Fernandez
, A.
, 2004, “Gradient-Based Optimization of Path Synthesis Problems in Planar Mechanisms
,” Mech. Mach. Theory
0094-114X, 39
, pp. 839
–856
.13.
Smaili
, A.
, Diab
, N.
, and Atallah
, N.
, 2005, “Optimum Synthesis of Mechanisms Using Tabu-gradient Search Algorithm
,” ASME J. Mech. Des.
1050-0472, 127
(5
), pp. 917
–923
.14.
Ulah
, I.
, and Kota
, S.
, 1997, “Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,” ASME J. Mech. Des.
1050-0472, 119
, pp. 504
–510
.15.
Martinez-Alfaro
, H.
, Valdez
, H.
, and Ortega
, J.
, 1998, “Linkage Synthesis of a Four-Bar Mechanism for n-Precision Points Using Simulated Annealing
,” DETC98, Proc. of the 1998 ASME Design Engineering Technical Conferences
, Atlanta, GA, Paper No. MECH-5942.16.
Kunjur
, S.
, and Krishnamurty
, S.
, 1997, “Genetic Algorithms in Mechanism Synthesis
,” J. Appl. Mech. Rob.
, 4
(2
), pp. 18
–24
.17.
Zhou
, H.
, and Cheung
, E. H. M.
, 2001, “Optimal Synthesis of Crank-Rocker Linkage for Path Generation Using the Orientation Structural Error of the Fixed Link
,” Mech. Mach. Theory
0094-114X, 36
, pp. 973
–982
.18.
Cabrera
, J. A.
, Simon
, A.
, and Prado
, M.
, 2002, “Optimal Synthesis of Mechanisms With Genetic Algorithm
,” Mech. Mach. Theory
0094-114X, 37
, pp. 1165
–1177
.19.
Laribi
, M. A.
, Mlika
, A.
, Romdhane
, L.
, and Zeghloul
, S.
, 2004, “A Combined Genetic Algorithm-Fuzzy Logic Method (GA-FL) in Mechanism Synthesis
,” Mech. Mach. Theory
0094-114X, 39
, pp. 717
–735
.20.
Camuto
, M.
, and Kinzel
, G.
, 1998, “Path Generation Using a Random Walk Algorithm
,” DETC98, Proc. of the 1998 ASME Design Engineering Technical Conferences
, Atlanta, GA, Paper No. MECH-5939.21.
Liu
, Y.
, and Xiao
, R.
, 2005, “Optimal Synthesis of Mechanisms for Path Generation Using Refined Numerical Representation Based Model and AIS Based Searching Method
,” ASME J. Mech. Des.
1050-0472, 127
(4
), pp. 688
–691
.22.
Sanchez Marin
, F. T.
, and Gonzalez
, A. P.
, 2003, “Global Optimization in Path Synthesis Based on Design Space Reduction
,” Mech. Mach. Theory
0094-114X, 38
, pp. 579
–594
.23.
McGarva
, J. R.
, 1994, “Rapid Search and Selection of Path Generating Mechanism From a Library
,” Mech. Mach. Theory
0094-114X, 29
(2
), pp. 223
–235
.24.
Mirth
, J. A.
, 1995, “Four-Bar Linkage Synthesis Methods for Two Precision Positions Combined With N Quasi-positions
,” Proc. of the 1995 ASME Design Engineering Technical Conferences
, DE-Vol. 82
, pp. 477
–484
.25.
Mirth
, J. A.
, 1996, “Two Precision Position Synthesis of Planar Linkages With Positional Rectification
,” 96-DETC, Proc. of the 1996 ASME Design Engineering Technical Conferences
, Irvine, CA, Paper No. MECH-1185.26.
Sutherland
, G. H.
, 1977, “Mixed-Exact Approximate Planar Mechanism Position Synthesis
,” ASME J. Eng. Ind.
0022-0817, 99
(2
), pp. 434
–439
.27.
Holte
, J. E.
, Chase
, T. R.
, and Erdman
, A. G.
, 2000, “Mixed Exact-Approximate Position Synthesis of Planar Mechanisms
,” ASME J. Mech. Des.
1050-0472, 122
, pp. 278
–286
.28.
Diab
, N.
, and Smaili
, A.
, 2005, “A New Approach for Precision/Approximate Point Synthesis of Planar Mechanisms
, The 2005 ASME Design Engineering Technical Conferences, ASME Paper No. 84339.29.
Smaili
, A.
, and Diab
, N.
, 2005, “Optimum Synthesis of Hybrid-Task Mechanisms Using Ant-Gradient Search Method
,” Mech. Mach. Theory
0094-114X, 42
, pp. 115
–130
.30.
Unruh
, V.
, and Krishnaswami
, P.
, 1995, “A Computer-Aided Design Technique for Semi-automated Infinite Point Coupler Curve Synthesis of Four-Bar Linkages
,” ASME J. Mech. Des.
1050-0472, 117
, pp. 143
–149
.31.
Zhan
, C. T.
, and Roskies
, R. Z.
, 1972, “Fourier Descriptors for Plane Closed Curves
,” IEEE Trans. Comput.
0018-9340 C-21
, pp. 269
–281
.32.
Latecki
, L. J.
, Lakamper
, R.
, and Eckhardt
, U.
, 2000, “Shape Descriptors for Non-rigid Shapes With a Single Closed Contour
,” IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pp. 424
–429
.33.
Gatica-Perez
, D.
, and Garcia-Ugalde
, F.
, 1999, “Compact Representation of Planar Curves Based on a Wavelet Shape Descriptor for Multimedia Applications
,” Vision Interface
, Trois-Rivières, Canada, May 19–21.34.
Botee
, H. M.
, and Bonabeau
, E.
, 1998, “Evolving Ant Colony Optimization
,” Adv. Complex Syst.
0219-5259, 1
, pp. 149
–159
.35.
Bonabeau
, E.
, Dorigo
, M.
, and Theraulaz
, G.
, 1999, Swarm Intelligence: From Natural to Artificial Systems
, Oxford University Press
, New York.36.
Gambardella
, L. M.
, Taillard
, E. D.
, and Dorigo
, M.
, 1999, “Ant Colonies for the Quadratic Assignment Problem
,” J. Oper. Res. Soc.
0160-5682, 50
(2
), pp. 167
–176
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.