The high degree of automation of Solid Freeform Fabrication (SFF) processing and its ability to create geometrically complex parts to precise dimensions provide it with a unique potential for low volume production of rapid tooling and functional components. A factor of significant importance in the above applications is the capability of producing components with adequate mechanical performance (e.g., stiffness and strength). This paper introduces a strategy for optimizing the design of Fused-Deposition Acrylonitrile-Butadiene-Styrene (FD-ABS; P400) components for stiffness and strength under a given set of loading conditions. In this strategy, a mathematical model of the structural system is linked to an approximate minimization algorithm to find the settings of select manufacturing parameters, which optimize the mechanical performance of the component. The methodology is demonstrated by maximizing the load carrying capacity of a two-section cantilevered FD-ABS beam.

1.
Kruth, J. P., Leu, M. C., and Nakagawa, T., 1998, “Progress in Additive Manufacturing and Rapid Prototyping,” CIRP Ann.
2.
WTEC, 1997, Rapid Prototyping in Europe and Japan, World Technology Evaluation Center Report on the Web at: (http://itri.loyola.edu/rp/toc.html).
3.
Jacobs, P. F., 1996, Stereolithography and Other RP&M Technologies, Society of Manufacturing Engineers, MI.
4.
Burns, M., 1993, Automated Fabrication: Improving Productivity in Manufacturing, Prentice-Hall, NJ.
5.
Thomas, J. P., and Rodrı´guez, J. F., 2000, “Modeling the Fracture Strength Between Fused-Deposition Extruded Roads,” Proceedings of the 11th Solid Freeform Fabrication Symposium, Austin, TX.
6.
Dvorak
,
P.
, 1998, “Here Comes Rapid Tooling,” Mach. Des., July, pp. 57–64.
7.
Stratasys, 1999, Private communication.
8.
Sarkis, B. E., and Kennerknecht, S., 1994, “Rapid Prototype Casting (RPC),” Fifth International Conference on Rapid Prototyping, Dayton, OH, pp. 291–300.
9.
Agarwala
,
M. K.
,
Jamalab
,
V. R.
,
Langrana
,
N. A.
,
Safari
,
A.
,
Whalen
,
P. J.
, and
Danforth
,
S. C.
,
1996
, “
Structural Quality of Parts Processed by Fused Deposition
,”
Rapid Prototyping Journal
,
2
(
4
), pp.
4
19
.
10.
Rovick, J. S., 1994, “An Additive Fabricator for High Speed Production of Artificial Limbs,” Fifth International Conference on Rapid Prototyping, Dayton, OH, pp. 47–56.
11.
Daniel, I., and Ishai, O., 1994, Engineering Mechanics of Composite Materials, Oxford University Press, NY.
12.
Tsai
,
S. W.
, and
Wu
,
E. M.
,
1971
, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
,
5
, pp.
58
80
.
13.
Azzi
,
V. D.
, and
Tsai
,
S. W.
,
1965
, “
Anisotropic Strength of Composites
,”
Exp. Mech.
,
5
(
9
), pp.
283
288
.
14.
Rodrı´guez
,
J. F.
,
Thomas
,
J. P.
, and
Renaud
,
J. E.
,
2000
, “
Characterization of the Mesostructure of Fused Deposition Acrylonitrile-Butadiene-Styrene Materials
,”
Rapid Prototyping Journal
,
6
(
3
), pp.
175
186
.
15.
Rodrı´guez, J. F., Thomas, J. P., and Renaud, J. E., 1999, “Maximizing the Strength of Fused Deposition ABS Plastic Parts,” Proceedings 10th Solid Freeform Fabrication Symposium, Austin, TX, pp. 335–342.
16.
Rodrı´guez, J. F., Thomas, J. P., and Renaud, J. E., 1999, “Tailoring the Mechanical Properties of Fused-Deposition Manufactured Components,” Proceedings of the Rapid Prototyping and Manufacturing Conference, Vol. 3, SME, Dearborn, MI, pp. 629–643.
17.
Jones, R. M., 1999, Mechanics of Composite Materials, 2nd Edition, Taylor & Francis, Philadelphia, PA.
18.
Caruso
,
J. J.
, and
Chamis
,
C. C.
,
1986
, “
Assessment of Simplified Composite Micromechanics Using Three Dimensional Finite Element Analysis
,”
J. Compos. Technol. Res.
,
8
(
3
), pp.
77
83
.
19.
Duvaut, G., 1983, “Homogenization et Materiaux Composites,” Trends and Applications of Pure Mathematics to Mechanics: Lecture Notes in Physics, Vol. 195, P. G. Ciarlet and M. Roseau, eds., Springer-Verlag, pp. 35–62.
20.
Rodrı´guez, J. F., 1999, “Modeling the Mechanical Behavior of Fused Deposition Acrylonitrile-Butadiene-Styrene Polymer Components,” Doctoral Dissertation, University of Notre Dame, Aerospace & Mechanical Engineering Department, Notre Dame, IN.
21.
Rodrı´guez
,
J. F.
,
Thomas
,
J. P.
, and
Renaud
,
J. E.
,
2001
, “
Mechanical Behavior of Acrylonitrile Butadiene Styrene (ABS) Fused Deposition Materials. Experimental Investigation
,”
Rapid Prototyping Journal
,
7
(
3
), pp.
148
158
.
22.
Rodrı´guez
,
J. F.
,
Renaud
,
J. E.
, and
Watson
,
L. T.
,
1998
, “
Convergence of Trust Region Augmented Lagrangian Methods Using Variable Fidelity Approximation Data
,”
Struct. Optim.
,
15
, pp.
141
156
.
23.
Rodrı´guez
,
J. F.
,
Renaud
,
J. E.
, and
Watson
,
L. T.
,
1998
, “
Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization
,”
ASME J. Mech. Des.
,
120
, pp.
58
66
.
24.
Kulkarni and Dutta, 1997, “Deposition Strategies and Resulting Part Stiffnesses in Layered Manufacturing,” DAC3987, Proc. 1997 ASME Design Engr. Tech. Conf., Sacramento, CA.
You do not currently have access to this content.