A numerical method for the contact analysis of uniform tooth height epicyclical spiral bevel gears stemming from the Klingelnberg’s Cyclo-Palloid System is proposed. The analysis is based on simultaneous generations of gear surfaces and contact simulation. A theoretical contact identification program has been developed. Conjugated tooth contact is examined. Longitudinal settings of contact patterns or contact across the surfaces from tooth root to tooth top were obtained as a function of machine-settings. The influences of each cutting parameter were isolated and were discussed.
Issue Section:
Technical Papers
1.
Gosselin
, C. J.
, and Cloutier
, L.
, 1993
, “The Generating Space for Parabolic Motion Error Spiral Bevel Gears Cut by the Gleason Method
,” ASME J. Mech. Des.
, 115
, pp. 483
–489
.2.
Fong
, Z. H.
, 2000
, “Mathematical Model of Universal Hypoid Generator with Supplemental Kinematic Flank Correction Motions
,” ASME J. Mech. Des.
, 122
, pp. 136
–142
.3.
Handschuch
, R. F.
, Bibel
, G. B.
, 1999
, “Experimental and Analytical Study of Aerospace Spiral Bevel Gear Tooth Fillet Stresses
,” ASME J. Mech. Des.
, 121
, pp. 565
–572
.4.
Litvin
, F. L.
, Wang
, J. C.
, Handschuh
, R. F.
, 1996
, “Computerized Design and Analysis of Face-Milled, Uniform Tooth Height Spiral Bevel Gears Drives
,” ASME J. Mech. Des.
, 118
, pp. 573
–579
.5.
Ma´rialigeti, J., Cseke, J., and Lelkes, M., 2000, “Connection of Some Cutting Parameters with Tooth Surface Modification in case of Epicycloidal Spiral Bevel Gears,” Proceedings of Second Conference on Mechanical Engineering, Budapest, Vol. 2, pp. 587–591.
6.
Schriefer, H., 1983, “Verhzahnundsgeometrie und Laufverhalten bogenverzahnter Kegelradgetriebe,” RWTH Aachen Dissertation.
7.
Zhang
, Y.
, Litvin
, F. L.
, Maruyama
, N.
, Takeda
, R.
, and Sugimoto
, M.
, 1994
, “Computerized Analysis of Meshing and Contact of Real Tooth Surfaces
,” ASME J. Mech. Des.
, 116
, pp. 677
–682
.8.
Gosselin
, C. J.
, Guertin
, T.
, Remond
, D.
, and Jean
, Y.
, 2000
, “Simulation and Experimental Measurement of the Transmission Error of Real Hypoid Gears Under Load
,” ASME J. Mech. Des.
, 122
, pp. 109
–122
.9.
Guingand, M., DeVaujany, J. P., Cheval, C., and Play, D., 2000, “Influence of Design Parameters and Tooth Profile Modification for Reducing Gear Transmission Error,” ASME IDECT/CIE 8th International Power Transmission and Gearing Conference. Baltimore, DETC 2000/PTG-14424.
10.
Hurtado, O. G., 1978, “Kegelradgetriebe Berechunung und Messung der Zahnflankengeometrie-Bestimmung der Eingriffsverhaltnisse,” RWTH Aachen Dissertation.
11.
Kavasaki, K., Tamura, H., and Nakano, Y., 1994, “A Method for Inspection of Spiral Bevel Gears in Klingelnberg Cyklo-Palloid System,” Proceedings of the 1994 International Gearing Conference, Newcastle upon Tyne, pp. 305–310.
12.
Mueller, H., and Eder, H., 2001, “Closed Loop Technology for Dry Cutting of Spiral Bevel and Hypoid Gears,” Proceedings of The JSME International Conference on Motion and Power Transmissions MPT2001-Fukuoka, Vol. 1, pp. 393–397.
13.
Remond, D., and Play, D., 1999, “Advantages and Perspectives of Gear Transmission Error Measurements with Optical Encoders,” 4th CMET Conference, Paris, pp.199–210.
14.
Litvin, F. L., 1989, Theory of Gearing, NASA Reference Publication 1212.
15.
Fong
, Z. H.
, and Tsay
, C. B.
, 1992
, “Kinematical Optimization of Spiral Bevel Gears
,” ASME J. Mech. Des.
, 114
, pp. 498
–506
.16.
Zhang
, Y.
, Litvin
, F. L.
, and Handschuh
, R. F.
, 1995
, “Computerized Design of Low-Noise Face-Milled Spiral Bevel Gears
,” Mechanism and Machine Theory
, 30
(8
), pp. 1171
–1178
.17.
Lelkes M., Play D., and Ma´rialigeti J., 2001, “Cutting Parameters Definition for Klingelnberg Spiral Bevel Gears Optimization,” Proceedings of The JSME International Conference on Motion and Power Transmissions MPT2001-Fukuoka, Vol. 1, pp. 375–380.
Copyright © 2002
by ASME
You do not currently have access to this content.