This paper presents the mechanical design of a medical staple using shape memory alloy (SMA) material. The design problem was formulated as an optimization problem minimizing an energy functional. The constraints were the length of wire, the properties of the SMA material, and the required clamping force. The Euler-Lagrange equation of this isoperimetric calculus of variation problem was derived, which was a fourth order two-point boundary value problem. An analytical solution was constructed and verified. A numerical optimization technique was applied to generate other possible solutions for the boundary value problem. The objective was to minimize the error of the solution for specific boundary conditions. The sequential quadratic programming algorithm was applied with Runge-Kutta integration to solve the boundary value problem. The design procedure described in this paper could be applied to the design of other mechanical components of wire form using SMA material.

1.
Assad
M.
,
Lombardi
S.
,
Berneche
S.
,
Desrosiers
E. A.
,
Yahia
L. H.
, and
Rivard
C. H.
,
1994
, “
Assays of Cytotoxicity of the Nickel-Titanium Shape Memory Alloy
,”
Annales de Chirurgie
, Vol.
48
, No.
8
, pp.
7311
736
. (In French)
2.
Bolza, O., 1961, Lectures on the calculus of variations, Dover publications.
3.
Castleman, L. S., 1973, The 5th Annual Biomaterials Symposium, Clemson, S.C.
4.
Cutright, D. E., Bhaskar, S. N., Perez, B., Johnson, R. M., and Cowan, G. S., 1973, Oral Surg., Vol. 35, No. 4.
5.
Dai
K. R.
,
1983
, “
Application of NiTi Shape Memory Alloy in Double-Cup Prosthesis of Hip
,”
Chinese Journal of Surgery
, Vol.
21
, No.
9
, pp.
540
541
. (In Chinese)
6.
Dai
K. R.
,
Hou
X. K.
,
Sun
Y. H.
,
Tang
R. G.
,
Qiu
S. J.
, and
Ni
C.
,
1993
, “
Treatment of Intra-Articular Fractures with Shape Memory Compression Staples
,”
Injury
, Vol.
24
, No.
10
, pp.
651
655
.
7.
Davis, L., 1995, personal correspondence.
8.
Drugacz
J.
,
Lekston
Z.
,
Morawiec
H.
, and
Januszewski
K.
,
1995
, “
Use of TiNiCo Shape-Memory Clamps in the Surgical Treatment of Mandibular Fractures
,”
J. Oral Maxillofac Surg.
, Vol.
53
, pp.
665
671
.
9.
Duerig, T. W., Melton, K. N., 1989, Designing with the Shape Memory Effect, MRS Int’l. Mtg. on Adv. Mats. Vol. 9, pp. 581–596.
10.
Duerig, T. W., Melton, K. N., Stockel, D., and Wayman, C. M., 1990, “An Introduction to Martensite and Shape Memory,” Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann.
11.
Hornbogen, E., 1990, “Shape Memory: Three Usable Effects in One Material,” Design Engineering.
12.
Hurricks, P. L., 1994, Electromechanical Product Design, pp. 350–352.
13.
Kambic, H., Sutton, C., Oku, T., Sugita, Y., Murabayashi, S., Harasaki, H. Kasick, J., Lipscomb, I. P., and Nokes, L. P. M., 1996, Medical Application of Shape Memory Alloy, Paston Press.
14.
Mercier, O., Melton, K. N., Gottardt, R., and Kulik, A., 1982, Proc. Int. Conf. on Solid-Solid Phase Transformations, pp. 1259–1263.
15.
Miles, P. H., 1989, “Shape-Memory Materials,” Engineering, Vol. 229, No. 7.
16.
Mraz, S. J., 1995, “From the Jaws of Ants to Absorbable Staples,” Machine Design, No. 1.
17.
Sanders
J. O.
,
Sanders
A. E.
,
More
R.
, and
Ashman
R. B.
,
1993
, “
A Preliminary Investigation of Shape Memory Alloys in the Surgical Correction of Scoliosis
,”
Spine
, Vol.
18
, No.
12
, pp.
1640
1646
.
18.
Schmerling, M. A., Wilkov, M. A., Sanders, A. E., and Woosley, J. E., 1975, “Medical Application of the Shape Memory Effect,” Shape Memory Effect in Alloys, Plenum Press, pp. 563–574.
19.
Shirey
E.
, and
Nose
Y.
,
1988
, “
Biological Performance of TiNi Shape Memory Alloy Vascular Ring Prostheses: A Two-Year Study
,”
Intl. J. of Artificial Organs
, Vol.
11
, No.
6
, pp.
487
492
.
20.
Special Metals Corporation, 1995, Nitinol Products, Ann Arbor, Michigan.
21.
Putters
J. L. M.
,
Sukul
D. K.
,
Zeeuw
G. R.
,
Bijma
A.
, and
Besselink
P. A.
,
1992
, “
Comparative Cell Culture Effects of Shape Memory Metal (Nitinol), Nickel and Titanium: A Biocompatibility Estimation
,”
Eur. Surg. Res.
, Vol.
24
, pp.
378
382
.
22.
Randin
J. P.
,
1988
, “
Corrosion Behavior of Nickel-Containing Alloys in Artificial Sweat
,”
J. of Biomedical Materials Research
, Vol.
22
, No.
7
, pp.
649
666
.
23.
Tobushi
H.
, and
Tanaka
K.
,
1991
, “
Deformation of a Shape Memory Alloy Helical Spring
,”
JSME, Series I
, Vol.
34
, No.
1
, pp.
83
89
.
24.
Warlimont
H.
,
1976
, “
Shape Memory Effects
,”
Materials Science and Engineering
, Vol.
25
, pp.
139
144
.
25.
Wayman
C. M.
,
1993
, “
Shape Memory Alloys
,”
Materials Research Society Bulletin
, Vol.
18
, No.
4
, pp.
49
56
.
26.
Wolfram, S., 1992, Mathematica, Addison-Wesley.
27.
Yang
C.
,
Sun
Y.
,
Dong
P.
, and
Wang
H.
,
1994
, “
Experimental Study of a New Sutureless Intraluminal Graft with a Shape-Memory Alloy Ring
,”
J. of Thoracic & Cardiovascular Surgery
, Vol.
107
, No.
1
, pp.
191
195
.
28.
Yang
P. J.
,
Zhang
Y. F.
,
Ge
M. Z.
,
Cai
T. D.
,
Tao
J. C.
, and
Yang
H. P.
,
1987
, “
Internal Fixation with Ni-Ti Shape Memory Alloy Compressive Staples in Orthopedic Surgery, A Review of 51 cases
,”
Chinese Medical Journal
, Vol.
100
, No.
9
, pp.
712
714
.
29.
Zhang
C. C.
,
1989
, “
Treatment of Patellar Fracture using an Internal Fixator of Shape-Memory Alloy
,”
Chinese Journal of Surgery
, Vol.
27
, No.
11
, pp.
692
695
. (In Chinese)
This content is only available via PDF.
You do not currently have access to this content.