Abstract

Lattice structures are intricate networks of interconnected struts, surfaces, and plates formed from irregular and non-periodic cells. Among the promising lattices, triply periodic minimal surfaces (TPMS) lattices stand out for their attractive blend of lightweight properties, excellent energy absorption capacity, and thermal insulation capabilities. In this paper, we propose a modeling technique to create innovative lattice structures with complicated shapes and compare their mechanical properties with existing TPMS lattices. The lattice is coded in matlab using mathematical equations. The filament-based material extrusion method was utilized to produce the desired lattice structures. In order to determine the compressive mechanical properties, the 3D-printed lattices underwent compression testing. The energy absorption capacity of the novel lattices was shown to be increased by 135%, 153%, and 162% when compared to gyroid lattice structures and 110%, 125%, and 132% when compared to diamond lattice structures at constant relative density. Furthermore, this technique gives data for creating lattice structures with complicated contours as well as the underlying design principles for the construction of lattice structures with superior mechanical characteristics and numerous applications, particularly in protective devices. The proposed approach could be used in the future to develop lightweight structures for biomedical applications that incorporate various lattice unit cell designs.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
2014
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
, pp.
1
510
.
2.
Tao
,
W.
, and
Leu
,
M. C.
,
2016
, “
Design of Lattice Structure for Additive Manufacturing
,”
International Symposium on Flexible Automation, ISFA 2016
,
Cleveland, OH
,
Aug. 1–3
, pp.
325
332
.
3.
Ren
,
F.
,
Zhang
,
C.
,
Liao
,
W.
,
Liu
,
T.
,
Li
,
D.
,
Shi
,
X.
,
Jiang
,
W.
, et al
,
2021
, “
Transition Boundaries and Stiffness Optimal Design for Multi-TPMS Lattices
,”
Mater. Des.
,
210
(
14
), p.
110062
.
4.
Novak
,
N.
,
Al-Ketan
,
O.
,
Borovinšek
,
M.
,
Krstulović-Opara
,
L.
,
Rowshan
,
R.
,
Vesenjak
,
M.
, and
Ren
,
Z.
,
2021
, “
Development of Novel Hybrid TPMS Cellular Lattices and Their Mechanical Characterisation
,”
J. Mater. Res. Technol.
,
15
(
6
), pp.
1318
1329
.
5.
Hao
,
W.
,
Liu
,
J.
, and
Kanwal
,
H.
,
2023
, “
Compressive Properties of Cementitious Composites Reinforced by 3D Printed PA 6 Lattice
,”
Polym. Test.
,
117
(
1
), p.
107811
.
6.
Yoo
,
D. J.
,
2013
, “
Heterogeneous Porous Scaffold Design Using the Continuous Transformations of Triply Periodic Minimal Surface Models
,”
Int. J. Precis. Eng. Manuf.
,
14
(
10
), pp.
1743
1753
.
7.
Zhang
,
Y.
,
Hsieh
,
M. T.
, and
Valdevit
,
L.
,
2021
, “
Mechanical Performance of 3D Printed Interpenetrating Phase Composites With Spinodal Topologies
,”
Compos. Struct.
,
263
(
9
), p.
113693
.
8.
Wildman
,
R.
,
Ashcroft
,
I.
, and
Abdi
,
M.
,
2018
, “
Design Optimization for an Additively Manufactured Automotive Component
,”
Int. J. Powertrains
,
7
(
2/3
), p.
1
.
9.
Uday Kumar
,
J.
,
Sankineni
,
R.
, and
Ravi Kumar
,
Y.
,
2023
, “
Design and Development of Fused Deposition Modeling (FDM) 3D-Printed Orthotic Insole by Using Gyroid Structure
,”
J. Mech. Behav. Biomed. Mater.
,
145
(
9
), p.
106005
.
10.
Sun
,
Z. P.
,
Guo
,
Y. B.
, and
Shim
,
V. P. W.
,
2021
, “
Deformation and Energy Absorption Characteristics of Additively-Manufactured Polymeric Lattice Structures—Effects of Cell Topology and Material Anisotropy
,”
Thin Walled Struct.
,
169
(
12
), p.
108420
.
11.
Eren
,
O.
,
Sezer
,
H. K.
, and
Yalçın
,
N.
,
2022
, “
Effect of Lattice Design on Mechanical Response of PolyJet Additively Manufactured Cellular Structures
,”
J. Manuf. Processes
,
75
(
3
), pp.
1175
1188
.
12.
Bhat
,
C.
,
Kumar
,
A.
,
Lin
,
S. C.
, and
Jeng
,
J. Y.
,
2023
, “
Design, Fabrication, and Properties Evaluation of Novel Nested Lattice Structures
,”
Addit Manuf.
,
68
(
8
), p.
103510
.
13.
Pugliese
,
R.
, and
Graziosi
,
S.
,
2023
, “
Biomimetic Scaffolds Using Triply Periodic Minimal Surface-Based Porous Structures for Biomedical Applications
,”
SLAS Technol.
,
28
(
3
), pp.
165
182
.
14.
Yang
,
X.
,
Yang
,
Q.
,
Shi
,
Y.
,
Yang
,
L.
,
Wu
,
S.
,
Yan
,
C.
, and
Shi
,
Y.
,
2022
, “
Effect of Volume Fraction and Unit Cell Size on Manufacturability and Compressive Behaviors of Ni-Ti Triply Periodic Minimal Surface Lattices
,”
Addit Manuf.
,
54
(
6
), p.
102737
.
15.
Sankineni
,
R.
, and
Ravi Kumar
,
Y.
,
2022
, “
Evaluation of Energy Absorption Capabilities and Mechanical Properties in FDM Printed PLA TPMS Structures
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
236
(
7
), pp.
3558
3577
.
16.
Al-Ketan
,
O.
,
Lee
,
D. W.
,
Rowshan
,
R.
, and
Abu Al-Rub
,
R. K.
,
2020
, “
Functionally Graded and Multi-morphology Sheet TPMS Lattices: Design, Manufacturing, and Mechanical Properties
,”
J. Mech. Behav. Biomed. Mater.
,
102
(
2
), p.
103520
.
17.
Asbai-Ghoudan
,
R.
,
Ruiz de Galarreta
,
S.
, and
Rodriguez-Florez
,
N.
,
2021
, “
Analytical Model for the Prediction of Permeability of Triply Periodic Minimal Surfaces
,”
J. Mech. Behav. Biomed. Mater.
,
124
(
12
), p.
104804
.
18.
Zhao
,
M.
,
Zhang
,
D. Z.
,
Liu
,
F.
,
Li
,
Z.
,
Ma
,
Z.
, and
Ren
,
Z.
,
2020
, “
Mechanical and Energy Absorption Characteristics of Additively Manufactured Functionally Graded Sheet Lattice Structures With Minimal Surfaces
,”
Int. J. Mech. Sci.
,
167
(
3
), p.
105262
.
19.
Maskery
,
I.
,
Sturm
,
L.
,
Aremu
,
A. O.
,
Panesar
,
A.
,
Williams
,
C. B.
,
Tuck
,
C. J.
,
Wildman
,
R. D.
,
Ashcroft
,
I. A.
, and
Hague
,
R. J. M.
,
2018
, “
Insights Into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing
,”
Polymer (Guildf)
,
152
(
19
), pp.
62
71
.
20.
Fu
,
J.
,
Sun
,
P.
,
Du
,
Y.
,
Li
,
H.
,
Zhou
,
X.
, and
Tian
,
Q.
,
2022
, “
Isotropic Design and Mechanical Characterization of TPMS-Based Hollow Cellular Structures
,”
Compos. Struct.
,
279
(
1
), p.
114818
.
21.
Bai
,
L.
,
Gong
,
C.
,
Chen
,
X.
,
Sun
,
Y.
,
Xin
,
L.
,
Pu
,
H.
,
Peng
,
Y.
, and
Luo
,
J.
,
2020
, “
Mechanical Properties and Energy Absorption Capabilities of Functionally Graded Lattice Structures: Experiments and Simulations
,”
Int. J. Mech. Sci.
,
182
(
18
), p.
105735
.
22.
Hu
,
J.
,
Tan
,
A. T. L.
,
Chen
,
H.
, and
Hu
,
X.
,
2022
, “
Superior Compressive Properties of 3D Printed Plate Lattice Mechanical Metamaterials
,”
Int. J. Mech. Sci.
,
231
(
19
), p.
107586
.
23.
Sun
,
Z. P.
,
Guo
,
Y. B.
, and
Shim
,
V. P. W.
,
2021
, “
Characterisation and Modeling of Additively-Manufactured Polymeric Hybrid Lattice Structures for Energy Absorption
,”
Int. J. Mech. Sci.
,
191
(
3
), p.
106101
.
24.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing
,”
Addit Manuf.
,
19
(
1
), pp.
81
94
.
25.
Beyer
,
C.
, and
Figueroa
,
D.
,
2016
, “
Design and Analysis of Lattice Structures for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121014
26.
Li
,
D.
,
Qin
,
R.
,
Chen
,
B.
, and
Zhou
,
J.
,
2021
, “
Analysis of Mechanical Properties of Lattice Structures With Stochastic Geometric Defects in Additive Manufacturing
,”
Mater. Sci. Eng. A
,
822
(
24
), p.
141666
.
27.
Ozdemir
,
Z.
,
Hernandez-Nava
,
E.
,
Tyas
,
A.
,
Warren
,
J. A.
,
Fay
,
S. D.
,
Goodall
,
R.
,
Todd
,
I.
, and
Askes
,
H.
,
2016
, “
Energy Absorption in Lattice Structures in Dynamics: Experiments
,”
Int. J. Impact Eng.
,
89
(
3
), pp.
49
61
.
28.
Tancogne-Dejean
,
T.
,
Spierings
,
A. B.
, and
Mohr
,
D.
,
2016
, “
Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption Under Static and Dynamic Loading
,”
Acta Mater.
,
116
(
15
), pp.
14
28
.
29.
Yang
,
L.
,
Yan
,
C.
,
Han
,
C.
,
Chen
,
P.
,
Yang
,
S.
, and
Shi
,
Y.
,
2018
, “
Mechanical Response of a Triply Periodic Minimal Surface Cellular Structures Manufactured by Selective Laser Melting
,”
Int. J. Mech. Sci.
,
148
(
11
), pp.
149
157
.
30.
Al-Ketan
,
O.
,
Rezgui
,
R.
,
Rowshan
,
R.
,
Du
,
H.
,
Fang
,
N. X.
, and
Abu Al-Rub
,
R. K.
,
2018
, “
Microarchitected Stretching-Dominated Mechanical Metamaterials With Minimal Surface Topologies
,”
Adv. Eng. Mater.
,
20
(
9
), p.
1800029
.
31.
Al-Ketan
,
O.
,
Rowshan
,
R.
,
Palazotto
,
A. N.
, and
Abu Al-Rub
,
R. K.
,
2019
, “
On Mechanical Properties of Cellular Steel Solids With Shell-Like Periodic Architectures Fabricated by Selective Laser Sintering
,”
ASME J. Eng. Mater. Technol.
,
141
(
2
), p.
021009
.
32.
Spear
,
D. G.
,
Palazotto
,
A. N.
, and
Kemnitz
,
R. A.
,
2021
, “
Mechanical Properties of Additively Manufactured Periodic Cellular Structures and Design Variations
,”
ASME J. Eng. Mater. Technol.
,
143
(
4
), p.
041004
.
33.
Hassan
,
A.
,
Balakrishnan
,
H.
, and
Akbari
,
A.
,
2013
, “
Polylactic Acid Based Blends, Composites and Nanocomposites
,”
Adv. Struct. Mater.
,
18
(
6
), pp.
361
396
.
34.
Habib
,
F. N.
,
Iovenitti
,
P.
,
Masood
,
S. H.
, and
Nikzad
,
M.
,
2018
, “
Fabrication of Polymeric Lattice Structures for Optimum Energy Absorption Using Multi Jet Fusion Technology
,”
Mater. Des.
,
155
(
10
), pp.
86
98
.
35.
Miltz
,
J.
, and
Ramon
,
O
,
1990
, “
Energy Absorption Characteristics of Polymeric Foams Used as Cushioning Materials
,”
Polym. Eng. Sci.
,
30
(
2
), pp.
129
133
.
You do not currently have access to this content.