Abstract

Short carbon fiber (SCF) reinforced thermoplastic composites (SCFRTCs) are attracting broad attention in various fields for their excellent mechanical properties. The fracture toughness, an essential characteristic of the resistance of materials to crack propagation, is considered a critical aspect of the long-term performance of SCFRTCs structures. The fracture toughness of SCFRTCs depends on two competing mechanisms: the interface between SCFs and polymer matrix may promote crack initiation, while the SCFs hinder the crack propagation. In this study, the fracture toughness of SCFRTCs with varying SCFs volume fractions is first determined by a three-point bending test. The results show that adding SCFs effectively improves the fracture toughness of SCFRTCs, and an increase of up to 73.7% at the SCFs volume fraction of 5.45 vol%. In addition, it is found that heat treatment and its temperature have no effect on the fracture toughness of SCFRTCs. Subsequently, the full-field strain around the crack tip is analyzed by digital image correlation (DIC), and the strain level significantly decreases after adding SCFs. The fracture surface of the SCFRTCs specimen is much rougher compared with HDPE, and obvious bridging SCFs are observed, which make it to absorb more energy for fracture, thus explaining the toughening mechanism of SCFs on SCFRTCs.

References

1.
Kumar
,
V.
,
Yeole
,
P. S.
,
Hiremath
,
N.
,
Spencer
,
R.
,
Billah
,
K. M. M.
,
Vaidya
,
U.
,
Hasanian
,
M.
, et al
,
2021
, “
Internal Arcing and Lightning Strike Damage in Short Carbon Fiber Reinforced Thermoplastic Composites
,”
Compos. Sci. Technol.
,
201
, p.
108525
.
2.
Anandakumar
,
P.
,
Timmaraju
,
M. V.
, and
Velmurugan
,
R.
,
2021
, “
Development of Efficient Short/Continuous Fiber Thermoplastic Composite Automobile Suspension Upper Control Arm
,”
Mater. Today Proc.
,
39
, pp.
1187
1191
.
3.
Lingesh
,
B. V.
,
Ravi Kumar
,
B. N.
,
Rudresh
,
B. M.
, and
Reddappa
,
H. N.
,
2018
, “
Hybridization Effect of Fibers on Mechanical Properties of PA66/PP Blend-Based Thermoplastic Composites
,”
Adv. Compos. Hybrid Mater.
,
1
(
4
), pp.
766
776
.
4.
Lauke
,
B.
,
Fu
,
S.-Y.
, and
Mai
,
Y. W.
,
2009
,
Science and Engineering of Short Fibre Reinforced Polymer Composites
,
Woodhead Publishing Co
,
Cambridge, UK
.
5.
Doddalli Rudrappa
,
S.
, and
Yellampalli Srinivasachar
,
V.
,
2020
, “
Significance of the Type of Reinforcement on the Physicomechanical Behavior of Short Glass Fiber and Short Carbon Fiber-Reinforced Polypropylene Composites
,”
Eng. Rep.
,
2
(
2
).
6.
Aparna
,
S.
,
Purnima
,
D.
, and
Adusumalli
,
R. B.
,
2020
, “
Effect of Short Carbon Fiber Content and Water Absorption on Tensile and Impact Properties of PA6/PP Blend Based Composites
,”
Polym. Compos.
,
41
(
12
), pp.
5167
5181
.
7.
Run
,
M.
,
Li
,
X.
,
Song
,
H.
, and
Wang
,
Z.
,
2010
, “
Studies on the Morphological, Rheological, Electrical, Mechanical and Thermal Properties of the PTT/SCF Composites
,”
J. Thermoplast Compos.
,
23
(
6
), pp.
765
777
.
8.
Capela
,
C.
,
Oliveira
,
S. E.
, and
Ferreira
,
J. A. M.
,
2019
, “
Fatigue Behavior of Short Carbon Fiber Reinforced Epoxy Composites
,”
Compos. Part B Eng.
,
164
, pp.
191
197
.
9.
Sonsino
,
C.
, and
Moosbrugger
,
E.
,
2008
, “
Fatigue Design of Highly Loaded Short-Glass-Fibre Reinforced Polyamide Parts in Engine Compartments
,”
Int. J. Fatigue
,
30
(
7
), pp.
1279
1288
.
10.
Casado
,
J. A.
,
Carrascal
,
I.
,
Polanco
,
J. A.
, and
Gutiérrez-Solana
,
F.
,
2006
, “
Fatigue Failure of Short Glass Fibre Reinforced PA 6.6 Structural Pieces for Railway Track Fasteners
,”
Eng. Fail. Anal.
,
13
(
2
), pp.
182
197
.
11.
Bernasconi
,
A.
,
Davoli
,
P.
, and
Armanni
,
C.
,
2010
, “
Fatigue Strength of a Clutch Pedal Made of Reprocessed Short Glass Fibre Reinforced Polyamide
,”
Int. J. Fatigue
,
32
(
1
), pp.
100
107
.
12.
Jumahat
,
A.
,
Haris
,
N. A.
, and
Mohamad
,
F. N. C.
,
2019
, “
Slurry Pot Erosion Wear of Nanoclay Modified Short Fiber Reinforced Polymer (SFRP) Composites
,”
Int. J. Eng. Adv. Technol.
,
9
(
1
), pp.
5832
5838
.
13.
Yao
,
R.
,
Shi
,
J.
, and
Zheng
,
J.
,
2019
, “
Mechanical Enhancement and Strain Sensing of Electrofusion Joint With Carbon Fiber-Reinforced Polyethylene
,”
ASME Pressure Vessels and Piping Conference
,
San Antonio, TX
,
July 14–19
.
14.
Celentano
,
D.
,
Wimmer
,
D.
,
Colabella
,
L.
, and
Cisilino
,
A. P.
,
2015
, “
Viscoelastic Mechanical Characterization of a Short-Fiber Reinforced Polyethylene Tube: Experiments and Modelling
,”
Int. J. Pres. Ves. Pip.
,
134
, pp.
82
91
.
15.
Jiang
,
L.
,
Zhou
,
Y.
, and
Jin
,
F.
,
2022
, “
Design of Short Fiber-Reinforced Thermoplastic Composites: A Review
,”
Polym. Compos.
,
43
(
8
), pp.
4835
4847
.
16.
Dong
,
W.
,
Liu
,
H.
,
Park
,
S.
, and
Jin
,
F.
,
2014
, “
Fracture Toughness Improvement of Epoxy Resins With Short Carbon Fibers
,”
J. Ind. Eng. Chem.
,
20
(
4
), pp.
1220
1222
.
17.
Ravindran
,
A. R.
,
Ladani
,
R. B.
,
Wu
,
S.
,
Kinloch
,
A. J.
,
Wang
,
C. H.
, and
Mouritz
,
A. P.
,
2018
, “
Multi-scale Toughening of Epoxy Composites Via Electric Field Alignment of Carbon Nanofibres and Short Carbon Fibres
,”
Compos. Sci. Technol.
,
167
, pp.
115
125
.
18.
Liu
,
T.
,
Tian
,
X.
,
Zhang
,
M.
,
Abliz
,
D.
,
Li
,
D.
, and
Ziegmann
,
G.
,
2018
, “
Interfacial Performance and Fracture Patterns of 3D Printed Continuous Carbon Fiber With Sizing Reinforced PA6 Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
114
, pp.
368
376
.
19.
Wang
,
B.
,
Dong
,
N.
, and
Ding
,
G.
,
2020
, “
Mode I Interlaminar Fracture Toughness of CFRP Laminates Reinforced With Short Aramid Fibers
,”
J. Adhes. Sci. Technol.
,
34
(
23
), pp.
2522
2536
.
20.
Liu
,
W.
,
Li
,
W.
,
Ma
,
C.
, and
Wang
,
S.
,
2019
, “
Study on Properties of Interlayer Short Fiber Reinforced Carbon Fiber/Epoxy Composite Laminates
,”
J. Phys. Conf. Ser.
,
1215
(
1
), p.
12040
.
21.
Isaincu
,
A.
,
Micota
,
D.
, and
Marşavina
,
L.
,
2022
, “
On the Fracture Toughness of PPS and PPA Reinforced With Glass Fiber
,”
Proc. Struct. Integr.
,
41
, pp.
646
655
.
22.
Fu
,
S.
,
Mai
,
Y.
,
Lauke
,
B.
, and
Yue
,
C.
,
2002
, “
Synergistic Effect on the Fracture Toughness of Hybrid Short Glass Fiber and Short Carbon Fiber Reinforced Polypropylene Composites
,”
Mater. Sci. Eng.
,
323
(
1
), pp.
326
335
.
23.
Liu
,
T.
,
Gao
,
Y.
,
Fan
,
W.
,
Gao
,
X.
, and
Ma
,
J.
,
2022
, “
Predictions of the Axial Tensile Property of the Unidirectional Composite Influenced by Microfiber Breakage Defects
,”
Text Res. J.
,
92
(
1–2
), pp.
15
29
.
24.
Kim
,
W.
,
Heo
,
Y.
,
Lee
,
J.
,
Rhee
,
K. Y.
, and
Park
,
S.
,
2021
, “
Effect of Atmospheric-Pressure Plasma Treatments on Fracture Toughness of Carbon Fibers-Reinforced Composites
,”
Molecules
,
26
(
12
), p.
3698
.
25.
Yamamoto
,
T.
, and
Yabushita
,
S.
,
2022
, “
Enhancement of Surface Adhesion Between Carbon Fiber and Thermoplastic Using Polymer Colloid Dispersed in n-Butanol
,”
Results Mater.
,
16
, p.
100322
.
26.
Qi
,
L.
,
Min
,
W.
,
Gao
,
R.
,
Li
,
Z.
,
Yu
,
M.
, and
Sun
,
Z.
,
2023
, “
Optimization of Interfacial Bonding Properties Between Thermoplastic Liners and Carbon Fiber-Reinforced Composites by Atmospheric-Pressure Plasma and Failure Mechanism Study
,”
Polym. Compos.
,
44
(
4
), pp.
2361
2378
.
27.
Fu
,
S.
, and
Mai
,
Y.
,
2002
, “
Combined Effect of Fiber Content and Microstructure on the Fracture Toughness of SGF and SCF Reinforced Polypropylene Composites
,”
J. Mater. Sci.
,
37
(
14
), pp.
3067
3074
.
28.
Goldberg
,
O.
,
Greenfeld
,
I.
, and
Wagner
,
H. D.
,
2020
, “
Efficient Toughening of Short-Fiber Composites Using Weak Magnetic Fields
,”
Materials
,
13
(
10
), p.
2415
.
29.
Friedrich
,
K.
,
1985
, “
Microstructural Efficiency and Fracture Toughness of Short Fiber/Thermoplastic Matrix Composites
,”
Compos. Sci. Technol.
,
22
(
1
), pp.
43
74
.
30.
Wells
,
J. K.
, and
Beaumont
,
P. W. R.
,
1988
, “
The Toughness of a Composite Containing Short Brittle Fibres
,”
J. Mater. Sci.
,
23
(
4
), pp.
1274
1278
.
31.
Cheng
,
L.
,
He
,
R.
,
Gao
,
Y.
,
Cui
,
H.
, and
Li
,
Y.
,
2022
, “
Determination of Fibre Tension Fracture Toughness of Composite Laminates at High Loading Rate
,”
Compos. Sci. Technol.
,
228
, p.
109619
.
32.
Kan
,
W. H.
,
Albino
,
C.
,
Dias-da-Costa
,
D.
,
Dolman
,
K.
,
Lucey
,
T.
,
Tang
,
X.
,
Cairney
,
J.
, and
Proust
,
G.
,
2018
, “
Fracture Toughness Testing Using Photogrammetry and Digital Image Correlation
,”
MethodsX
,
5
, pp.
1166
1177
.
33.
Tarik Yildirim
,
K. T. F. E.
,
2019
, “
Investigation of Multiple Cracking Behavior of Cement-Based Fiber Composites by Digital Image Correlation Method
,”
J. Fac. Eng. Archit. Gaz.
,
34
(
1
), pp.
479
493
.
34.
Wu
,
C.-M.
,
Lin
,
P.-C.
,
Kumar
,
S.
, and
Chen
,
J. C.
,
2022
, “
Long-Term Open-Hole Tensile Creep Properties of Self-Reinforced PET Composites Measured by Digital Image Correlation
,”
Mater. Chem. Phys.
,
278
, p.
125633
.
35.
ASTM
,
2010
,
Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer
,
American Society for Testing and Materials International
,
West Conshohocken, PA
, Standard No. ASTM D1238.
36.
ASTM
,
2007
,
Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials
,
American Society for Testing and Materials International
,
West Conshohocken, PA
, Standard No. ASTM D5045.
37.
Ali
,
I.
, and
Elleithy
,
R.
,
2011
, “
Toughness of HDPE/CaCO3 Microcomposites Prepared From Masterbatch by Melt Blend Method
,”
J. Appl. Polym. Sci.
,
122
(
5
), pp.
3303
3315
.
38.
Fouad
,
H.
,
Elleithy
,
R.
, and
Alothman
,
O. Y.
,
2013
, “
Thermo-Mechanical, Wear and Fracture Behavior of High-Density Polyethylene/Hydroxyapatite Nano Composite for Biomedical Applications: Effect of Accelerated Ageing
,”
J. Mater. Sci. Technol.
,
29
(
6
), pp.
573
581
.
39.
EL-Bagory
,
T. M. A. A.
,
Sallam
,
H. E. M.
, and
Younan
,
M. Y. A.
,
2015
, “
Evaluation of Fracture Toughness Behavior of Polyethylene Pipe Materials
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061402
.
40.
Onishi
,
P.
, and
Hashemi
,
S.
,
2009
, “
Effect of Fibre Concentration and Strain Rate on Mechanical Properties of Single-Gated and Double-Gated Injection-Moulded Short Glass Fibre-Reinforced Polypropylene Copolymer Composites
,”
J. Mater. Sci.
,
44
(
13
), pp.
3445
3456
.
41.
Kanny
,
K.
,
Jawahar
,
P.
, and
Moodley
,
V. K.
,
2008
, “
Mechanical and Tribological Behavior of Clay–Polypropylene Nanocomposites
,”
J. Mater. Sci.
,
43
(
22
), pp.
7230
7238
.
42.
Mandell
,
J. F.
,
Darwish
,
A. Y.
, and
Mcgarry
,
F. J.
,
1982
, “
Time and Temperature Effects on the Fracture Toughness of Rigid Poly (vinylch1oride) Pipe Materials
,”
Polym. Eng. Sci.
,
22
(
13
), pp.
826
831
.
43.
Bonadies
,
I.
,
Avella
,
M.
,
Avolio
,
R.
,
Carfagna
,
C.
,
Errico
,
M. E.
, and
Gentile
,
G.
,
2011
, “
Poly (Vinyl Chloride)/CaCO3 Nanocomposites: Influence of Surface Treatments on the Properties
,”
J. Appl. Polym. Sci.
,
122
(
6
), pp.
3590
3598
.
44.
Mamunya
,
Y.
,
Maruzhenko
,
O.
,
Kolisnyk
,
R.
,
Iurzhenko
,
M.
,
Pylypenko
,
A.
,
Masiuchok
,
O.
,
Godzierz
,
M.
,
Krivtsun
,
I.
,
Trzebicka
,
B.
, and
Pruvost
,
S.
,
2023
, “
Pyroresistive Properties of Composites Based on HDPE and Carbon Fillers
,”
Polymers-Basel
,
15
(
9
), p.
2105
.
You do not currently have access to this content.