Abstract

Laser metal deposition (LMD) is an additive manufacturing process with an extreme potential in large-scale metal production. Among the printable metals, the Inconel 625 has found a wide variety of cutting-edge applications in the aerospace, defense, and space sectors. Thus, knowledge of mechanical properties under quasi-static and dynamic conditions is fundamental. In this work, the quasi-static and dynamic compression behavior of Inconel 625 obtained by LMD is presented. The curves of printed Inconel 625 showed a change in slope in the work hardening phase, which is due to the mechanics of the dislocation motion. Therefore, a modified two-stage (TS) Hollomon power-law is proposed to model this specific mechanical behavior, which identifies a threshold strain that delimit two different hardening behaviors. Furthermore, Johnson–Cook and Cowper–Symonds models were used to represent the effect of strain rate and temperature on the material properties. A variable strain rate sensitivity along the compression strain was found. Hence, double sensitivity terms were introduced into the TS Hollomon power-law, allowing to reproduce the dynamic behavior of Inconel 625.

References

1.
Srivastava
,
M.
,
Rathee
,
S.
,
Maheshwari
,
S.
, and
Kundra
,
T.
,
2019
,
Additive Manufacturing Fundamentals and Advancements
,
CRC Press
,
Boca Raton, FL
.
2.
Ortiz
,
A.
,
Romano
,
C. A.
,
Poler
,
R.
, and
Sabater
,
J. P. G.
,
2018
,
Engineering Digital Transformation: Proceedings of the 11th International Conference on Industrial Engineering and Industrial Management
,
Springer
,
Berlin
.
3.
Singh
,
R.
, and
Davim
,
J. P.
,
2019
,
Additive Manufacturing: Application and Innovation
,
CRC Press
,
Boca Raton, FL
.
4.
Williams
,
N.
, and
Whittaker
,
P.
,
2019
,
Metal Additive Manufacturing
, Vol.
5
,
Inovar Communications Ltd
,
Shrewsbury, UK
.
5.
Williams
,
N.
, and
Whittaker
,
P.
,
2020
,
Metal Additive Manufacturing
, Vol.
6
,
Inovar Communications Ltd.
,
Shrewsbury, UK
.
6.
Liu
,
J.
,
Zheng
,
B.
,
Zhang
,
K.
,
Yang
,
B.
, and
Yu
,
X.
,
2019
, “
Ballistic Performance and Energy Absorption Characteristics of Thin Nickel-Based Alloy Plates at Elevated Temperatures
,”
Int. J. Impact Eng.
,
126
(
1
), pp.
160
171
.
7.
Féron
,
D.
, and
Féron
,
D.
,
2012
,
2—Overview of Nuclear Materials and Nuclear Corrosion Science and Engineering
,
Woodhead Publishing
,
Sawston, UK
, pp.
31
56
.
8.
Hunt
,
J. F.
,
1986
,
Narrow Gap Welding of Pressure Vessels—A Manufacturer’s View –, Proceedings of the International Conference on Welding for Challenging Environments
,
Pergamon
,
Toronto, CA
, pp.
107
116
.
9.
Wheeldon
,
J.
,
Shingledecker
,
J.
, and
Zhang
,
D.
,
2013
,
4—Materials for Boilers Operating Under Supercritical Steam Conditions
,
Woodhead Publishing
,
Sawston, UK
, pp.
81
103
.
10.
Cook
,
T. S.
,
1982
, “
Stress–Strain Behavior of Inconel 718 During Low Cycle Fatigue
,”
ASME J. Eng. Mater. Technol.
,
104
(
3
), pp.
186
191
.
11.
Kakinuma
,
Y.
,
Mori
,
M.
,
Oda
,
Y.
,
Mori
,
T.
,
Kashihara
,
M.
,
Hansel
,
A.
, and
Fujishima
,
M.
,
2016
, “
Influence of Metal Powder Characteristics on Product Quality With Directed Energy Deposition of Inconel 625
,”
CIRP Ann. Manuf. Technol.
,
65
(
1
), pp.
209
212
.
12.
Abioye
,
T. E.
,
Folkes
,
J.
, and
Clare
,
A. T.
,
2013
, “
A Parametric Study of Inconel 625 Wire Laser Deposition
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2145
2151
.
13.
Sexton
,
L.
,
Lavin
,
S.
,
Byrne
,
G.
, and
Kennedy
,
A.
,
2002
, “
Laser Cladding of Aerospace Materials
,”
J. Mater. Process. Technol.
,
122
(
1
), pp.
63
68
.
14.
Dinda
,
G. P.
,
Dasgupta
,
A. K.
, and
Mazumder
,
J.
,
2009
, “
Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability
,”
Mater. Sci. Eng. A
,
509
(
1–2
), pp.
98
104
.
15.
Rombouts
,
M.
,
Maes
,
G.
,
Mertens
,
M.
, and
Hendrix
,
W.
,
2012
, “
Laser Metal Deposition of Inconel 625: Microstructure and Mechanical Properties
,”
J. Laser Appl.
,
24
(
5
), p.
052007
.
16.
Gopinath
,
K.
,
Gogia
,
A. K.
,
Kamat
,
S. V.
,
Balamuralikrishinan
,
R.
, and
Ramamurty
,
U.
,
2008
, “
Tensile Properties of Ni-Based Superalloy 720li: Temperature and Strain Rate Effects
,”
Metall. Mater. Trans. A
,
39
(
A
), pp.
23
40
.
17.
Jiang
,
S.
,
Sun
,
D.
,
Zhang
,
Y.
, and
Yan
,
B.
,
2018
, “
Influence of Heat Treatment on Microstructures and Mechanical Properties of NiCuCrMoTiAlNb Nickel-Based Alloy
,”
Metals
,
8
(
4
), pp.
217
230
.
18.
Clément
,
N.
,
Caillard
,
D.
, and
Martin
,
J.
,
1984
, “
Heterogeneous Deformation of Concentrated Ni-Cr f.c.c. Alloys: Macroscopic and Microscopic Behaviour
,”
Acta Metall.
,
32
(
6
), pp.
961
975
.
19.
Hua
,
P.-T.
,
Zhang
,
W.-H.
,
Huang
,
L.-J.
, and
Sun
,
W.-R.
,
2017
, “
Investigation of Work Hardening Behavior of Inconel X-750 Alloy
,”
Acta Metall. Sin. (English Lett.)
,
30
(
9
), pp.
869
877
.
20.
Khodabakhshia
,
F.
,
Farshidianfar
,
M. H.
,
Gerlich
,
A. P.
,
Nosko
,
M.
,
Trembošová
,
V.
, and
Khajepour
,
A.
,
2019
, “
Microstructure, Strain-Rate Sensitivity, Work Hardening, and Fracture Behavior of Laser Additive Manufactured Austenitic and Martensitic Stainless Steel Structures
,”
Mater. Sci. Eng. A
,
756
(
1
), pp.
575
561
.
21.
Zhao
,
Y.
,
Sun
,
J.
,
Wang
,
P.
,
Li
,
J.
, and
Yan
,
Y.
,
2017
, “
A Comparative Study on Johnson–Cook and Modified Johnson–Cook Constitutive Material Model to Predict the Dynamic Behavior Laser Additive Manufacturing FeCr Alloy
,”
J. Alloys Compd.
,
723
(
6
), pp.
179
187
.
22.
Zong
,
X.
,
Li
,
Z.
,
Li
,
J.
,
Cheng
,
X.
,
Chen
,
R.
,
Tan
,
C. W.
, and
Wang
,
H. M.
,
2018
, “
High Strain Rate Response of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy Fabricated by Laser Additive Manufacturing
,”
J. Alloys Compd.
,
781
(
1
), pp.
47
55
.
23.
Ladani
,
L.
,
Razmi
,
J.
, and
Farhan Choudhury
,
S.
,
2014
, “
Mechanical Anisotropy and Strain Rate Dependency Behavior of Ti6al4v Produced Using E-beam Additive Fabrication
,”
ASME J. Eng. Mater. Technol.
,
136
(
3
), p.
031006
.
24.
Yuan
,
K.
,
Guo
,
W.
,
Li
,
P.
,
Wang
,
J.
,
Su
,
Y.
,
Lin
,
X.
, and
Li
,
Y.
,
2018
, “
Influence of Process Parameters and Heat Treatments on the Microstructures and Dynamic Mechanical Behaviors of Inconel 718 Superalloy Manufactured by Laser Metal Deposition
,”
Mater. Sci. Eng. A
,
721
(
1
), pp.
215
225
.
25.
Babamiri
,
B. B.
,
Indeck
,
J.
,
Demeneghi
,
G.
,
Cuadra
,
J.
, and
Hazeli
,
K.
,
2020
, “
Quantification of Porosity and Microstructure and Their Effect on Quasi-Static and Dynamic Behavior of Additively Manufactured Inconel 718
,”
Addit. Manuf.
,
34
(
1
), p.
101380
.
26.
Mancini
,
E.
,
Sasso
,
M.
,
Rossi
,
M.
,
Chiappini
,
G.
,
Newaz
,
G.
, and
Amodio
,
D.
,
2015
, “
Design of an Innovative System for Wave Generation in Direct Tension–Compression Split Hopkinson Bar
,”
J. Dyn. Behav. Mater.
,
1
, pp.
201
213
.
27.
Rossi
,
M.
,
Pierron
,
F.
, and
Forquin
,
P.
,
2014
, “
Assessment of the Metrological Performance of an In Situ Storage Image Sensor Ultra-High Speed Camera for Full-Field Deformation Measurements
,”
Meas. Sci. Technol.
,
25
(
1
), p.
15
.
28.
Sasso
,
M.
,
Fardmoshiri
,
M.
,
Mancini
,
E.
,
Rossi
,
M.
, and
Cortese
,
L.
,
2015
, “
High Speed Imaging for Material Parameters Calibration at High Strain Rate
,”
Euro. Phys. J.
,
225
(
4
), pp.
295
309
.
29.
Othman
,
R.
,
2018
,
The Kolsky–Hopkinson Bar Machine: Selected Topics
,
Springer
,
Berlin, Germany
.
30.
Song
,
B.
, and
Chen
,
W.
,
2011
,
Split Hopkinson (Kolsky) Bar: Design, Testing and Applications
,
Springer
,
Berlin, Germany
.
31.
Sasso
,
M.
,
Forcellese
,
A.
,
Simoncini
,
M.
,
Amodio
,
D.
, and
Mancini
,
E.
,
2015
, “
High Strain Rate Behaviour of aa7075 Aluminum Alloy at Different Initial Temper States
,” Material Forming ESAFORM 2015, Vol. 651 of Key Engineering Materials, Trans Tech Publications Ltd., pp.
114
119
.
32.
Utzeri
,
M.
,
Sasso
,
M.
,
Chiappini
,
G.
, and
Lenci
,
S.
,
2021
, “
Nonlinear Vibrations of a Composite Beam in Large Displacements: Analytical, Numerical and Experimental Approaches
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
2
), p.
021002
.
33.
Chakrabarty
,
J.
,
2010
,
Applied Plasticity
,
Springer
,
Berlin, Germany
.
34.
Sasso
,
M.
,
Fardmoshiri
,
M.
,
Mancini
,
E.
,
Rossi
,
M.
, and
Cortese
,
L.
,
2015
, “
High Strain Rate Behaviour of Aa7075 Aluminum Alloy at Different Initial Temper States
,”
Key Eng. Mater.
,
651–653
(
7
), pp.
114
119
. www.scientific.net/KEM.651-653.114
35.
Marchese
,
G.
,
Lorusso
,
M.
,
Parizia
,
S.
,
Bassini
,
E.
,
Lee
,
J.-W.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Terner
,
M.
,
Hong
,
H.-U.
,
Ugues
,
D.
,
Lombardi
,
M.
, and
Biamino
,
S.
,
2018
, “
Influence of Heat Treatments on Microstructure Evolution and Mechanical Properties of Inconel 625 Processed by Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
729
(
6
), pp.
64
75
.
36.
Yangfan
,
W.
,
Xizhang
,
C.
,
Chuanchu
,
S.
,
Rossi
,
M.
, and
Palumbo
,
G.
,
2019
, “
Microstructure and Mechanical Properties of Inconel 625 Fabricated by Wirearc Additive Manufacturing
,”
Surf. Coat. Technol.
,
374
(
9
), pp.
116
123
.
37.
Xu
,
F.
,
Lv
,
Y.
,
Liu
,
Y.
,
Shu
,
F.
,
He
,
P.
, and
Xu
,
F.
,
2013
, “
Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy During Pulsed Plasma Arc Deposition Process
,”
J. Mater. Sci. Technol.
,
29
(
5
), pp.
480
488
.
38.
Verdi
,
D.
,
Garrido
,
M. A.
,
Munez
,
C. J.
, and
Poza
,
P.
,
2014
, “
Mechanical Properties of Inconel 625 Laser Cladded Coatings: Depth Sensing Indentation Analysis
,”
Mater. Sci. Eng. A
,
598
(
1
), pp.
15
21
.
39.
Theriault
,
A.
,
Xue
,
L.
, and
Dryden
,
J. R.
,
2009
, “
Fatigue Behavior of Laser Consolidated in-625 at Room and Elevated Temperatures
,”
Mater. Sci. Eng. A
,
516
(
3
), pp.
217
225
.
40.
Kashaev
,
N.
,
Horstmann
,
M.
,
Ventzke
,
V.
,
Riekehr
,
S.
, and
Huber
,
N.
,
2013
, “
Comparative Study of Mechanical Properties Using Standard and Micro-Specimens of Base Materials Inconel 625, Inconel 718 and Ti-6Al-4V
,”
J. Mater. Res. Technol.
,
2
(
1
), pp.
43
47
.
41.
Guo
,
Q.
,
Li
,
D.
,
Guo
,
S.
,
Peng
,
H.
, and
Hu
,
J.
,
2011
, “
The Effect of Deformation Temperature on the Microstructure Evolution of Inconel 625 Superalloy
,”
J. Nucl. Mater.
,
414
(
3
), pp.
440
450
.
42.
Li
,
D.
,
Guo
,
Q.
,
Guo
,
S.
,
Peng
,
H.
, and
Wu
,
Z.
,
2011
, “
The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy
,”
Mater. Des.
,
32
(
2
), pp.
696
705
.
43.
Hu
,
Y.
,
Lin
,
X.
,
Li
,
Y.
,
Zhang
,
S.
,
Gao
,
X.
,
Liu
,
F.
,
Li
,
X.
, and
Huang
,
W.
,
2020
, “
Plastic Deformation Behavior and Dynamic Recrystallization of Inconel 625 Superalloy Fabricated by Directed Energy Deposition
,”
Mater. Des.
,
186
(
1
), p.
108359
.
44.
Lattanzi
,
A.
,
Piccininni
,
A.
,
Guglielmi
,
P.
,
Rossi
,
M.
, and
Palumbo
,
G.
,
2021
, “
A Fast Methodology for the Accurate Characterization and Simulation of Laser Heat Treated Blanks
,”
Int. J. Mech. Sci.
,
192
(
2
), p.
106134
.
45.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.