Abstract

Viscoelastic (VE) dampers are a kind of effective passive vibration control device and widely used to attenuate structural vibration. In this article, experimental study and multiscale modeling analysis on the VE damper for reducing wind-excited vibration are carried out. First, an experimental study on VE damper is conducted to reveal the dynamic properties of VE damper. The experimental results show that the dynamic properties of VE material are influenced by excitation frequency and insignificantly affected by displacement amplitude, and the VE material has good energy dissipation capacity. Second, the damping mechanism of VE damper is analyzed from micro-perspectives by considering the influence of cross-linked and free molecular chain networks. Then, a novel type spherical chain network model based on the chain network microstructure is proposed. The proposed model is verified by comparing the experimental data and the mathematical results, which indicates that the proposed model can accurately describe the dynamic properties of VE damper affected by different temperatures, frequencies, and displacements.

References

1.
Saidi
,
I.
,
Gad
,
E. F.
,
Wilson
,
J. L.
, and
Haritos
,
N.
,
2011
, “
Development of Passive Viscoelastic Damper to Attenuate Excessive Floor Vibrations
,”
Eng. Struct.
,
33
(
12
), pp.
3317
3328
.
2.
Matsagar
,
V. A.
, and
Jangid
,
R. S.
,
2005
, “
Viscoelastic Damper Connected to Adjacent Structures Involving Seismic Isolation
,”
J. Civ. Eng. Manag.
,
11
(
4
), pp.
309
322
.
3.
Marko
,
J.
,
Thambiratnam
,
D.
, and
Perera
,
N.
,
2006
, “
Study of Viscoelastic and Friction Damper Configurations in the Seismic Mitigation of Medium-Rise Structures
,”
J. Mech. Mater. Struct.
,
1
(
6
), pp.
1001
1039
.
4.
Rashid
,
A.
, and
Nicolescu
,
C. M.
,
2008
, “
Design and Implementation of Tuned Viscoelastic Dampers for Vibration Control in Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
1036
1053
.
5.
Mori
,
K.
,
Kono
,
D.
,
Yamaji
,
I.
, and
Matsubara
,
A.
,
2017
, “
Modelling of Viscoelastic Damper Support for Reduction in Low Frequency Residual Vibration in Machine Tools
,”
Precis. Eng.
,
50
, pp.
313
319
.
6.
Ghaemmaghami
,
A. R.
, and
Kwon
,
O. S.
,
2018
, “
Nonlinear Modeling of MDOF Structures Equipped With Viscoelastic Dampers With Strain, Temperature and Frequency-Dependent Properties
,”
Eng. Struct.
,
168
, pp.
903
914
.
7.
Chang
,
K. C.
,
Soong
,
T. T.
,
Oh
,
S. T.
, and
Lai
,
M. L.
,
1995
, “
Seismic Behavior of Steel Frame With Added Viscoelastic Dampers
,”
J. Struct. Eng.
,
121
(
10
), pp.
1418
1426
.
8.
Bergman
,
D. M.
, and
Hanson
,
R. D.
,
1993
, “
Viscoelastic Mechanical Damping Devices Tested at Real Earthquake Displacements
,”
Earthquake Spectra
,
9
(
3
), pp.
389
417
.
9.
Montgomery
,
M.
, and
Christopoulos
,
C.
,
2015
, “
Experimental Validation of Viscoelastic Coupling Dampers for Enhanced Dynamic Performance of High-Rise Buildings
,”
J. Struct. Eng.
,
141
(
5
), p.
04014145
.
10.
Christopoulos
,
C.
, and
Montgomery
,
M.
,
2013
, “
Viscoelastic Coupling Dampers (VCDs) for Enhanced Wind and Seismic Performance of High-Rise Buildings
,”
Earthquake Eng. Struct. Dyn.
,
42
(
15
), pp.
2217
2233
.
11.
Xu
,
Z. D.
,
Liao
,
Y. X.
,
Ge
,
T.
, and
Xu
,
C.
,
2016
, “
Experimental and Theoretical Study of Viscoelastic Dampers With Different Matrix Rubbers
,”
J. Eng. Mech.
,
142
(
8
), p.
04016051
.
12.
Xu
,
Z. D.
,
Xu
,
C.
, and
Hu
,
J.
,
2015
, “
Equivalent Fractional Kelvin Model and Experimental Study on Viscoelastic Damper
,”
J. Vib. Control
,
21
(
13
), pp.
2536
2552
.
13.
Tezcan
,
S. S.
, and
Uluca
,
O.
,
2003
, “
Reduction of Earthquake Response of Plane Frame Buildings by Viscoelastic Dampers
,”
Eng. Struct.
,
25
(
14
), pp.
1755
1761
.
14.
Shen
,
K. L.
,
Soong
,
T. T.
,
Chang
,
K. C.
, and
Lai
,
M. L.
,
1995
, “
Seismic Behaviour of Reinforced Concrete Frame With Added Viscoelastic Dampers
,”
Eng. Struct.
,
17
(
5
), pp.
372
380
.
15.
Zhang
,
R. H.
,
Soong
,
T. T.
, and
Mahmoodi
,
P.
,
1989
, “
Seismic Response of Steel Frame Structures With Added Viscoelastic Dampers
,”
Earthquake Eng. Struct. Dyn.
,
18
(
3
), pp.
389
396
.
16.
Kang
,
J. D.
, and
Tagawa
,
H.
,
2013
, “
Seismic Response of Steel Structures with Seesaw Systems Using Viscoelastic Dampers
,”
Earthquake Eng. Struct. Dyn.
,
42
(
5
), pp.
779
794
.
17.
Shukla
,
A. K.
, and
Datta
,
T. K.
,
1999
, “
Optimal Use of Viscoelastic Dampers in Building Frames for Seismic Force
,”
J. Struct. Eng.
,
125
(
4
), pp.
401
409
.
18.
Samali
,
B.
, and
Kwok
,
K. C. S.
,
1995
, “
Use of Viscoelastic Dampers in Reducing Wind- and Earthquake-Induced Motion of Building Structures
,”
Eng. Struct.
,
17
(
9
), pp.
639
654
.
19.
Park
,
S. W.
,
2001
, “
Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
8065
8092
.
20.
Lewandowski
,
R.
, and
Chorążyczewski
,
B.
,
2010
, “
Identification of the Parameters of the Kelvin–Voigt and the Maxwell Fractional Models, Used to Modeling of Viscoelastic Dampers
,”
Comput. Struct.
,
88
(
1–2
), pp.
1
17
.
21.
Tsai
,
C. S.
,
1994
, “
Temperature Effect of Viscoelastic Dampers During Earthquakes
,”
J. Struct. Eng.
,
120
(
2
), pp.
394
409
.
22.
Xu
,
Z. D.
,
Wang
,
D. X.
, and
Shi
,
C. F.
,
2011
, “
Model, Tests and Application Design for Viscoelastic Dampers
,”
J. Vib. Control
,
17
(
9
), pp.
1359
1370
.
23.
Xu
,
Z. D.
,
2007
, “
Earthquake Mitigation Study on Viscoelastic Dampers for Reinforced Concrete Structures
,”
J. Vib. Control
,
13
(
1
), pp.
29
43
.
24.
Miehe
,
C.
, and
Göktepe
,
S.
,
2005
, “
A Micro–Macro Approach to Rubber-Like Material. Part II: The Micro-Sphere Model of Finite Rubber Viscoelasticity
,”
J. Mech. Phys. Solids
,
53
(
10
), pp.
2231
2258
.
25.
Unterberger
,
M. J.
,
Schmoller
,
K. M.
,
Wurm
,
C.
,
Bausch
,
A. R.
, and
Holzapfel
,
G. A.
,
2013
, “
Viscoelasticity of Cross-Linked Actin Networks: Experimental Tests, Mechanical Modeling and Finite-Element Analysis
,”
Acta Biomater.
,
9
(
7
), pp.
7343
7353
.
26.
Liu
,
K.
, and
Ovaert
,
T. C.
,
2011
, “
Poro-Viscoelastic Constitutive Modeling of Unconfined Creep of Hydrogels Using Finite Element Analysis With Integrated Optimization Method
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
3
), pp.
440
450
.
27.
Van Ruymbeke
,
E.
,
Keunings
,
R.
,
Stéphenne
,
V.
,
Hagenaars
,
A.
, and
Bailly
,
C.
,
2002
, “
Evaluation of Reptation Models for Predicting the Linear Viscoelastic Properties of Entangled Linear Polymers
,”
Macromolecules
,
35
(
7
), pp.
2689
2699
.
28.
Li
,
Y.
,
Tang
,
S.
,
Abberton
,
B. C.
,
Kröger
,
M.
,
Burkhart
,
C.
,
Jiang
,
B.
,
Papakonstantopoulos
,
G. J.
,
Poldneff
,
M.
, and
Liu
,
W. K.
,
2012
, “
A Predictive Multiscale Computational Framework for Viscoelastic Properties of Linear Polymers
,”
Polymer
,
53
(
25
), pp.
5935
5952
.
29.
Xu
,
Z. D.
,
Ge
,
T.
, and
Liu
,
J.
,
2020
, “
Experimental and Theoretical Study of High-Energy Dissipation-Viscoelastic Dampers Based on Acrylate-Rubber Matrix
,”
J. Eng. Mech.
,
146
(
6
), p.
04020057
.
30.
Lewandowski
,
R.
,
Slowik
,
M.
, and
Przychodzki
,
M.
,
2017
, “
Parameters Identification of Fractional Models of Viscoelastic Dampers and Fluids
,”
Struct. Eng. Mech.
,
63
(
2
), pp.
181
193
.
You do not currently have access to this content.