Abstract

The study presents the anisotropy in the indentation creep response of zinc. Indentation creep tests were conducted on grains with three different orientations, namely, 〈0001〉, 112¯0, and 101¯0. Indentation creep along the 〈c〉 axis showed a pronounced creep exhibiting a 25% higher creep displacement as compared with indentation perpendicular to the 〈c〉 axis. However, the recovery observed was the highest for basal-oriented grains wherein a recovery of 50% to its indented depth was observed, whereas for 112¯0 the recovery observed was 30%. The stress exponent, n, was obtained by employing two different approaches for each of the orientations and a difference in the stress exponent value was also observed, highlighting the anisotropic creep response. Basal and non-basal oriented grains showed a lower (n ≅ 1.6) and higher stress exponent (n ≅ 5), respectively, highlighting the different operable creep mechanism. Surface topography using atomic force microscope (AFM) revealed twinning and sink-in for 112¯0 and 101¯0, whereas uniform pile up was observed for basal grain.

References

1.
Interzinc
,
1994
, “
Designing Zinc Castings for Electronic Applications
,” https://www.eazall.com/PublicDoc/Designing_for_Electronic_Applications.pdf.
2.
Hosford
,
W. F.
,
2009
,
Mechanical Behavior of Materials
,
Cambridge University Press
,
Cambridge, MA
.
3.
Tyndall
,
E. P. T.
,
1950
, “
Creep-Time Law for Zinc Crystals
,”
J. Appl. Phys.
,
21
, p.
939
. 10.1063/1.1699793
4.
Edwards
,
G. R.
,
McNelley
,
T. R.
, and
Sherby
,
O. D.
,
1974
, Calhoun: The NPS Institutional Archive, Dudley Knox Library, Naval Postgraduate School, Monterey, CA.
5.
Pathak
,
S.
,
Stojakovic
,
D.
, and
Kalidindi
,
S. R.
,
2009
, “
Measurement of the Local Mechanical Properties in Polycrystalline Samples Using Spherical Nanoindentation and Orientation Imaging Microscopy
,”
Acta Mater.
,
57
(
10
), pp.
3020
3028
. 10.1016/j.actamat.2009.03.008
6.
Chinh
,
N. Q.
, and
Szommer
,
P.
,
2014
, “
Mathematical Description of Indentation Creep and Its Application for the Determination of Strain Rate Sensitivity
,”
Mater. Sci. Eng. A
,
611
, pp.
333
336
. 10.1016/j.msea.2014.06.011
7.
Chinh
,
N. Q.
,
Csanádi
,
T.
,
Győri
,
T.
,
Valiev
,
R. Z.
,
Straumal
,
B. B.
,
Kawasaki
,
M.
, and
Langdon
,
T. G.
,
2012
, “
Strain Rate Sensitivity Studies in an Ultrafine-Grained Al–30 wt% Zn Alloy Using Micro- and Nanoindentation
,”
Mater. Sci. Eng. A
,
543
, pp.
117
120
. 10.1016/j.msea.2012.02.056
8.
Phani
,
P. S.
, and
Oliver
,
W. C.
,
2016
, “
A Direct Comparison of High Temperature Nanoindentation Creep and Uniaxial Creep Measurements for Commercial Purity Aluminum
,”
Acta Mater.
,
111
, pp.
31
38
. 10.1016/j.actamat.2016.03.032
9.
Goodall
,
R.
, and
Clyne
,
T. W.
,
2006
, “
A Critical Appraisal of the Extraction of Creep Parameters From Nanoindentation Data Obtained at Room Temperature
,”
Acta Mater.
,
54
(
20
), pp.
5489
5499
. 10.1016/j.actamat.2006.07.020
10.
Godavarti
,
P. S.
, and
Murty
,
K. L.
,
1987
, “
Creep Anisotropy of Zinc Using Impression Tests
,”
J. Mater. Sci. Lett.
,
6
(
4
), pp.
3
. 10.1007/BF01756797
11.
Somekawa
,
H.
, and
Mukai
,
T.
,
2010
, “
Nanoindentation Creep Behavior of Grain Boundary in Pure Magnesium
,”
Philos. Mag. Lett.
,
90
(
12
), pp.
883
890
. 10.1080/09500839.2010.514577
12.
Nautiyal
,
P.
,
Jain
,
J.
, and
Agarwal
,
A.
,
2016
, “
Influence of Loading Path and Precipitates on Indentation Creep Behavior of Wrought Mg–6 wt% Al–1 wt% Zn Magnesium Alloy
,”
Mater. Sci. Eng. A
,
650
, pp.
183
189
. 10.1016/j.msea.2015.10.040
13.
Beausir
,
B.
, and
Fundenberger
,
J. J.
,
2015
,
ATOM—Analysis Tools for Orientation Maps
,
Université de Lorraine
.
14.
Mayo
,
M.
, and
Nix
,
W.
,
1988
, “
A Micro-Indentation Study of Superplasticity in Pb, Sn, and Sn-38 wt% Pb
,”
Acta Metall.
,
36
(
8
), pp.
2183
2192
. 10.1016/0001-6160(88)90319-7
15.
Bower
,
A. F.
,
Fleck
,
N. A.
,
Needleman
,
A.
, and
Ogbonna
,
N.
,
1993
, “
Indentation of a Power Law Creeping Solid
,”
Proc. R. Soc. A
,
441
(
1911
), pp.
97
124
. 10.1098/rspa.1993.0050
16.
Hosford
,
W. F.
,
2010
,
Mechanical Behavior of Materials
,
Cambridge University Press
,
Cambridge, MA
.
17.
Guo
,
T.
,
Siska
,
F.
,
Cheng
,
J.
, and
Barnett
,
M.
,
2018
, “
Initiation of Basal Slip and Tensile Twinning in Magnesium Alloys During Nanoindentation
,”
J. Alloys Compd.
,
731
, pp.
620
630
. 10.1016/j.jallcom.2017.10.088
18.
Burr
,
D. J.
, and
Thompson
,
N.
,
1965
, “
Twinning and Fracture in Zinc Single Crystals
,”
Philos. Mag.
,
12
(
116
), pp.
229
244
. 10.1080/14786436508218866
19.
Fischer-Cripps
,
A. C.
,
2002
,
Nanoindentation
,
Spring-Verlag
,
New York
.
20.
Nautiyal
,
P.
,
Jain
,
J.
, and
Agarwal
,
A.
,
2015
, “
A Comparative Study of Indentation Induced Creep in Pure Magnesium and AZ61 Alloy
,”
Mater. Sci. Eng. A
,
630
, pp.
131
138
. 10.1016/j.msea.2015.01.075
21.
Nayyeri
,
G.
,
Poole
,
W. J.
,
Sinclair
,
C. W.
, and
Zaefferer
,
S.
,
2017
, “
The Role of Indenter Radius on Spherical Indentation of High Purity Magnesium Loaded Nearly Parallel to the c-Axis
,”
Scr. Mater.
,
137
, pp.
119
122
. 10.1016/j.scriptamat.2017.04.039
22.
Dragatogiannis
,
D. A.
,
Koumoulos
,
E. P.
,
Kartsonakis
,
I. A.
, and
Charitidis
,
C. A.
,
2016
, “
Deformation Mechanism During Nanoindentation Creep and Corrosion Resistance of Zn
,”
Int. J. Struct. Integr.
,
7
(
1
), pp.
47
69
. 10.1108/IJSI-07-2014-0034
23.
Vagarali
,
S. S.
, and
Langdon
,
T. G.
,
1981
, “
Deformation Mechanisms in hcp Metals at Elevated Temperatures—I. Creep Behavior of Magnesium
,”
Acta Metall.
,
29
(
12
), pp.
1969
1982
. 10.1016/0001-6160(81)90034-1
You do not currently have access to this content.