Historically, the approach in material selection was to find the proper material that serves a specific application. Recently, a new approach is implemented such that materials are being architected and topologically tailored to deliver a specific functionality. Periodic cellular materials are increasingly gaining interest due to their tunable structure-related properties. However, the concept of structure–property relationship is not fully employed due to limitations in manufacturing capabilities. Nowadays, additive manufacturing (AM) techniques are facilitating the fabrication of complex structures with high control over the topology. In this work, the mechanical properties of additively manufactured periodic metallic cellular materials are investigated. The presented cellular materials comprise a shell-like topology based on the mathematically known triply periodic minimal surfaces (TPMS). Maraging steel samples with different topologies and relative densities have been fabricated using the powder bed fusion selective laser sintering (SLS) technique, and three-dimensional printing quality was assessed by means of electron microscopy. Samples were tested in compression and the compressive mechanical properties have been deduced. Effects of changing layer thickness and postprocessing such as heat treatment are discussed. Results showed that the diamond TPMS lattice has shown superior mechanical properties among the examined topologies.

References

1.
Ashby
,
M. F.
,
Evans
,
T.
,
Fleck
,
N. A.
,
Hutchinson
,
J.
,
Wadley
,
H.
, and
Gibson
,
L.
,
2000
,
Metal Foams: A Design Guide
,
Elsevier
, Oxford, UK.
2.
De Meller
,
M.
,
1925
, “
Produit Métallique Pour L'obtention D'objets Laminés, Moulés ou Autres, et Procédés Pour sa Fabrication
,” French Patent No. 615, p.
1926
.
3.
Bai
,
Y.
, and
Williams
,
C. B.
,
2018
, “
Binder Jetting Additive Manufacturing With a Particle-Free Metal Ink as a Binder Precursor
,”
Mater. Des.
,
147
, pp.
146
156
.
4.
Chen
,
X.
,
Liu
,
X.
,
Childs
,
P.
,
Brandon
,
N.
, and
Wu
,
B.
,
2017
, “
A Low Cost Desktop Electrochemical Metal 3D Printer
,”
Adv. Mater. Technol.
,
2
(
10
), p.
1700148
.
5.
Vyatskikh
,
A.
,
Delalande
,
S.
,
Kudo
,
A.
,
Zhang
,
X.
,
Portela
,
C. M.
, and
Greer
,
J. R.
,
2018
, “
Additive Manufacturing of 3D Nano-Architected Metals
,”
Nat. Commun.
,
9
(
1
), p.
593
.
6.
Heinl
,
P.
,
Müller
,
L.
,
Körner
,
C.
,
Singer
,
R. F.
, and
Müller
,
F. A.
,
2008
, “
Cellular Ti–6Al–4V Structures With Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting
,”
Acta Biomater.
,
4
(
5
), pp.
1536
1544
.
7.
Mullen
,
L.
,
Stamp
,
R. C.
,
Brooks
,
W. K.
,
Jones
,
E.
, and
Sutcliffe
,
C. J.
,
2009
, “
Selective Laser Melting: A Regular Unit Cell Approach for the Manufacture of Porous, Titanium, Bone In‐Growth Constructs, Suitable for Orthopedic Applications
,”
J. Biomed. Mater. Res., Part B
,
89
(
2
), pp.
325
334
.
8.
Arabnejad
,
S.
,
Johnston
,
R. B.
,
Pura
,
J. A.
,
Singh
,
B.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2016
, “
High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints
,”
Acta Biomater.
,
30
, pp.
345
356
.
9.
McKown
,
S.
,
Shen
,
Y.
,
Brookes
,
W.
,
Sutcliffe
,
C.
,
Cantwell
,
W.
,
Langdon
,
G.
,
Nurick
,
G.
, and
Theobald
,
M.
,
2008
, “
The Quasi-Static and Blast Loading Response of Lattice Structures
,”
Int. J. Impact Eng.
,
35
(
8
), pp.
795
810
.
10.
Lietaert
,
K.
,
Cutolo
,
A.
,
Boey
,
D.
, and
Van Hooreweder
,
B.
,
2018
, “
Fatigue Life of Additively Manufactured Ti6Al4V Scaffolds Under Tension-Tension, Tension-Compression and Compression-Compression Fatigue Load
,”
Sci. Rep.
,
8
(
1
), p.
4957
.
11.
Speirs
,
M.
,
Van Hooreweder
,
B.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2017
, “
Fatigue Behaviour of NiTi Shape Memory Alloy Scaffolds Produced by SLM, a Unit Cell Design Comparison
,”
J. Mech. Behav. Biomed. Mater.
,
70
, pp.
53
59
.
12.
Sallica-Leva
,
E.
,
Jardini
,
A.
, and
Fogagnolo
,
J.
,
2013
, “
Microstructure and Mechanical Behavior of Porous Ti–6Al–4V Parts Obtained by Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
26
, pp.
98
108
.
13.
Wang
,
J.-H.
,
Ren
,
J.
,
Liu
,
W.
,
Wu
,
X.-Y.
,
Gao
,
M.-X.
, and
Bai
,
P.-K.
,
2018
, “
Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy
,”
Materials
,
11
(
9
), p.
1546
.
14.
de Formanoir
,
C.
,
Brulard
,
A.
,
Vivès
,
S.
,
Martin
,
G.
,
Prima
,
F.
,
Michotte
,
S.
,
Rivière
,
E.
,
Dolimont
,
A.
, and
Godet
,
S.
,
2017
, “
A Strategy to Improve the Work-Hardening Behavior of Ti–6Al–4V Parts Produced by Additive Manufacturing
,”
Mater. Res. Lett.
,
5
(
3
), pp.
201
208
.
15.
Sing
,
S.
,
Yeong
,
W.
,
Wiria
,
F.
, and
Tay
,
B.
,
2016
, “
Characterization of Titanium Lattice Structures Fabricated by Selective Laser Melting Using an Adapted Compressive Test Method
,”
Exp. Mech.
,
56
(
5
), pp.
735
748
.
16.
Deshpande
,
V.
,
Ashby
,
M.
, and
Fleck
,
N.
,
2001
, “
Foam Topology: Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.
17.
Simone
,
A. E.
, and
Gibson
,
L. J.
,
1998
, “
Effects of Solid Distribution on the Stiffness and Strength of Metallic Foams
,”
Acta Mater.
,
46
(
6
), pp.
2139
2150
.
18.
Simone
,
A.
, and
Gibson
,
L.
,
1998
, “
The Effects of Cell Face Curvature and Corrugations on the Stiffness and Strength of Metallic Foams
,”
Acta Mater.
,
46
(
11
), pp.
3929
3935
.
19.
Mazur
,
M.
,
Leary
,
M.
,
Sun
,
S.
,
Vcelka
,
M.
,
Shidid
,
D.
, and
Brandt
,
M.
,
2016
, “
Deformation and Failure Behaviour of Ti–6Al–4V Lattice Structures Manufactured by Selective Laser Melting (SLM)
,”
Int. J. Adv. Manuf. Technol.
,
84
(
5–8
), pp.
1391
1411
.
20.
Liu
,
L.
,
Kamm
,
P.
,
García-Moreno
,
F.
,
Banhart
,
J.
, and
Pasini
,
D.
,
2017
, “
Elastic and Failure Response of Imperfect Three-Dimensional Metallic Lattices: The Role of Geometric Defects Induced by Selective Laser Melting
,”
J. Mech. Phys. Solids
,
107
, pp.
160
184
.
21.
Tancogne-Dejean
,
T.
,
Spierings
,
A. B.
, and
Mohr
,
D.
,
2016
, “
Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption Under Static and Dynamic Loading
,”
Acta Mater.
,
116
, pp.
14
28
.
22.
Vigliotti
,
A.
, and
Pasini
,
D.
,
2012
, “
Stiffness and Strength of Tridimensional Periodic Lattices
,”
Comput. Methods Appl. Mech. Eng.
,
229–232
, pp.
27
43
.
23.
Berger
,
J. B.
,
Wadley
,
H. N.
, and
McMeeking
,
R. M.
,
2017
, “
Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,”
Nature
,
543
(
7646
), pp.
533
537
.
24.
Bonatti
,
C.
, and
Mohr
,
D.
,
2017
, “
Large Deformation Response of Additively-Manufactured FCC Metamaterials: From Octet Truss Lattices Towards Continuous Shell Mesostructures
,”
Int. J. Plast.
,
92
, pp.
122
147
.
25.
Al-Ketan
,
O.
,
Abu Al-Rub
,
R. K.
, and
Rowshan
,
R.
,
2018
, “
The Effect of Architecture on the Mechanical Properties of Cellular Structures Based on the IWP Minimal Surface
,”
J. Mater. Res.
,
33
(
3
), pp.
343
359
.
26.
Maskery
,
I.
,
Aboulkhair
,
N. T.
,
Aremu
,
A. O.
,
Tuck
,
C. J.
, and
Ashcroft
,
I. A.
,
2017
, “
Compressive Failure Modes and Energy Absorption in Additively Manufactured Double Gyroid Lattices
,”
Addit. Manuf.
,
16
, pp.
24
29
.
27.
Bobbert
,
F. S. L.
,
Lietaert
,
K.
,
Eftekhari
,
A. A.
,
Pouran
,
B.
,
Ahmadi
,
S. M.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2017
, “
Additively Manufactured Metallic Porous Biomaterials Based on Minimal Surfaces: A Unique Combination of Topological, Mechanical, and Mass Transport Properties
,”
Acta Biomater.
,
53
, pp.
572
584
.
28.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
,
Young
,
P.
, and
Raymont
,
D.
,
2014
, “
Advanced Lightweight 316 L Stainless Steel Cellular Lattice Structures Fabricated Via Selective Laser Melting
,”
Mater. Des.
,
55
, pp.
533
541
.
29.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Young
,
P.
,
2015
, “
Ti–6Al–4V Triply Periodic Minimal Surface Structures for Bone Implants Fabricated Via Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
51
, pp.
61
73
.
30.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
,
Bubb
,
S. L.
,
Young
,
P.
, and
Raymont
,
D.
,
2014
, “
Evaluation of Light-Weight AlSi10 Mg Periodic Cellular Lattice Structures Fabricated Via Direct Metal Laser Sintering
,”
J. Mater. Process. Technol.
,
214
(
4
), pp.
856
864
.
31.
Michielsen
,
K.
, and
Kole
,
J.
,
2003
, “
Photonic Band Gaps in Materials With Triply Periodic Surfaces and Related Tubular Structures
,”
Phys. Rev. B
,
68
(
11
), p.
115107
.
32.
Schoen
,
A. H.
,
1970
, “
Infinite Periodic Minimal Surfaces Without Self-Intersections
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-TN-D-5541
.https://ntrs.nasa.gov/search.jsp?R=19700020472
33.
Lee
,
D.-W.
,
Khan
,
K. A.
, and
Abu Al-Rub
,
R. K.
,
2017
, “
Stiffness and Yield Strength of Architectured Foams Based on the Schwarz Primitive Triply Periodic Minimal Surface
,”
Int. J. Plast.
,
95
(
Suppl. C
), pp.
1
20
.
34.
Abueidda
,
D. W.
,
Abu Al-Rub
,
R. K.
,
Dalaq
,
A. S.
,
Lee
,
D.-W.
,
Khan
,
K. A.
, and
Jasiuk
,
I.
,
2016
, “
Effective Conductivities and Elastic Moduli of Novel Foams With Triply Periodic Minimal Surfaces
,”
Mech. Mater.
,
95
, pp.
102
115
.
35.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H. C.
,
Brooks
,
J. W.
, and
Attallah
,
M. M.
,
2015
, “
On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
.
36.
Qiu
,
C.
,
Yue
,
S.
,
Adkins
,
N. J.
,
Ward
,
M.
,
Hassanin
,
H.
,
Lee
,
P. D.
,
Withers
,
P. J.
, and
Attallah
,
M. M.
,
2015
, “
Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting
,”
Mater. Sci. Eng.: A
,
628
, pp.
188
197
.
37.
Smith
,
J.
,
Xiong
,
W.
,
Yan
,
W.
,
Lin
,
S.
,
Cheng
,
P.
,
Kafka
,
O. L.
,
Wagner
,
G. J.
,
Cao
,
J.
, and
Liu
,
W. K.
,
2016
, “
Linking Process, Structure, Property, and Performance for Metal-Based Additive Manufacturing: Computational Approaches With Experimental Support
,”
Comput. Mech.
,
57
(
4
), pp.
583
610
.
38.
Van Bael
,
S.
,
Kerckhofs
,
G.
,
Moesen
,
M.
,
Pyka
,
G.
,
Schrooten
,
J.
, and
Kruth
,
J.-P.
,
2011
, “
Micro-CT-Based Improvement of Geometrical and Mechanical Controllability of Selective Laser Melted Ti6Al4V Porous Structures
,”
Mater. Sci. Eng.: A
,
528
(
24
), pp.
7423
7431
.
39.
Maskery
,
I.
,
Aremu
,
A.
,
Parry
,
L.
,
Wildman
,
R.
,
Tuck
,
C.
, and
Ashcroft
,
I.
,
2018
, “
Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading
,”
Mater. Des.
,
155
, pp.
220
232
.
40.
Zhang
,
L.
,
Feih
,
S.
,
Daynes
,
S.
,
Chang
,
S.
,
Wang
,
M. Y.
,
Wei
,
J.
, and
Lu
,
W. F.
,
2018
, “
Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures Under Compressive Loading
,”
Addit. Manuf.
,
23
, pp. 505–515.
41.
Abueidda
,
D. W.
,
Bakir
,
M.
,
Al-Rub
,
R. K. A.
,
Bergström
,
J. S.
,
Sobh
,
N. A.
, and
Jasiuk
,
I.
,
2017
, “
Mechanical Properties of 3D Printed Polymeric Cellular Materials With Triply Periodic Minimal Surface Architectures
,”
Mater. Des.
,
122
, pp.
255
267
.
42.
Wang
,
L.
,
Lau
,
J.
,
Thomas
,
E. L.
, and
Boyce
,
M. C.
,
2011
, “
Co‐Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation
,”
Adv. Mater.
,
23
(
13
), pp.
1524
1529
.
43.
ASM Handbook
,
1991
, “
Volume 4: Heat Treating
,” ASM International, Materials Park, OH, pp.
72
74
.
44.
Kempen
,
K.
,
Yasa
,
E.
,
Thijs
,
L.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2011
, “
Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel
,”
Phys. Procedia
,
12
, pp.
255
263
.
You do not currently have access to this content.