The creep behavior of Cu–0.3Cr–0.1Ag alloy was investigated by the impression creep testing technique and compared with that of pure copper under constant punching stress in the range 80–550 MPa at temperatures in the range 688–855 K. The enhanced creep resistance of the Cr- and Ag-containing alloys was attributed to the distribution of Cr-rich phase in the copper matrix. Assuming a power-law relationship between the impression stress and velocity, the average stress exponents of 6.0–7.5 and 6.4–8.0 were obtained for pure Cu and CuCrAg, respectively. It was found that the average activation energies were 112.4kJmol1 and 143.5kJmol1 for the pure Cu and CuCrAg alloys, respectively. These activation energies are close to 138kJmol1 for dislocation climb in Cu. This, together with the stress exponents of about 7, suggests that the operative creep mechanism is dislocation climb controlled by dislocation pipe diffusion.

1.
Raabe
,
D.
,
Miyake
,
K.
, and
Takahara
,
H.
, 2000, “
Processing, Microstructure, and Properties of Ternary High-Strength Cu–Cr–Ag In-Situ Composites
,”
Mater. Sci. Eng., A
0921-5093,
291
, pp.
186
197
.
2.
Jia
,
S. G.
,
Liu
,
P.
,
Ren
,
F. Z.
,
Tian
,
B. H.
,
Zheng
,
M. S.
, and
Zhou
,
G. S.
, 2005, “
Wear Behavior of Cu–Ag–Cr Alloy Wire Under Electrical Sliding
,”
Mater. Sci. Eng., A
0921-5093,
398
, pp.
262
267
.
3.
Zhang
,
D. L.
,
Mihara
,
K.
,
Takakura
,
E.
, and
Suzuki
,
H. G.
, 1999, “
Effect of the Amount of Cold Working and Ageing on the Ductility of a Cu–15%Cr–0.2%Ti In-Situ Composite
,”
Mater. Sci. Eng., A
0921-5093,
266
, pp.
99
108
.
4.
Jia
,
S. G.
,
Liu
,
P.
,
Ren
,
F. Z.
,
Tian
,
B. H.
,
Zheng
,
M. S.
, and
Zhou
,
G. S.
, 2004, “
Study on the Aging Precipitation of the High-Strength and High-Conductivity Dilute Solute Cu-O.1Ag-O.11Cr Alloy
,”
Trans. Mater. Heat Treat.
1009-6264,
25
, pp.
8
10
.
5.
Nagarjuna
,
S.
,
Sharma
,
K. K.
,
Sudhakar
,
I.
, and
Sarma
,
D. S.
, 2001, “
Age Hardening Studies in a Cu–4.5Ti–0.5Co Alloy
,”
Mater. Sci. Eng., A
0921-5093,
313
, pp.
251
260
.
6.
Fuxiang
,
H.
, and
Jusheng
,
M.
, 2003, “
Analysis of Phases in a Cu–Cr–Zr Alloy
,”
Scr. Mater.
1359-6462,
48
, pp.
97
102
.
7.
Jia
,
S. G.
,
Zheng
,
M. S.
,
Liu
,
P.
,
Ren
,
F. Z.
,
Tian
,
B. H.
,
Zhou
,
G. S.
, and
Lou
,
H. F.
, 2006, “
Aging Properties Studies in a Cu–Ag–Cr Alloy
,”
Mater. Sci. Eng., A
0921-5093,
419
, pp.
8
11
.
8.
Tang
,
N. Y.
,
Taplin
,
D. M. R.
,
Dunlop
,
G. L.
, and
Plumtree
,
A.
, 1984, “
Creep of Cu–Cr Type Alloys
,”
Proceedings of the Second International Conference on Creep and Fracture of Engineering Materials and Structures
,
Pineridge
,
Swansea
, pp.
235
244
.
9.
Mahmudi
,
R.
,
Karsaz
,
A.
,
Akbari-Fakhrabadi
,
A.
, and
Geranmayeh
,
A. R.
, 2010, “
Impression Creep Study of a Cu–0.3Cr–0.1Ag Alloy
,”
Mater. Sci. Eng., A
0921-5093,
527
, pp.
2702
2708
.
10.
Peng
,
L.
,
Yang
,
F.
,
Nie
,
J. F.
, and
Li
,
J. C. M.
, 2005, “
Impression Creep of a Mg-8Zn-4Al-0.5Ca Alloy
,”
Mater. Sci. Eng., A
0921-5093,
410–411
, pp.
42
47
.
11.
Kabirian
,
F.
, and
Mahmudi
,
R.
, 2009, “
Impression Creep Behavior of a Cast AZ91 Magnesium Alloy
,”
Metall. Mater. Trans. A
1073-5623,
40
, pp.
116
127
.
12.
Rezaee-Bazzaz
,
A.
, and
Mahmudi
,
R.
, 2005, “
Impression Creep of Sn–40Pb–2.5Sb Peritectic Solder Alloy
,”
Mater. Sci. Technol.
0267-0836,
21
, pp.
861
866
.
13.
Mahmudi
,
R.
,
Geranmayeh
,
A. R.
,
Noori
,
H.
,
Jahangiri
,
N.
, and
Khanbareh
,
H.
, 2008, “
Effect of Cooling Rate on the Room-Temperature Impression Creep of Lead-Free Sn–9Zn and Sn–8Zn–3Bi Solders
,”
Mater. Sci. Eng., A
0921-5093,
487
, pp.
20
25
.
14.
Dorner
,
D.
,
Roller
,
K.
,
Skrotzki
,
B.
,
Stockhert
,
B.
, and
Eggeler
,
G.
, 2003, “
Creep of a TiAl Alloy: A Comparison of Indentation and Tensile Testing
,”
Mater. Sci. Eng., A
0921-5093,
357
, pp.
346
354
.
15.
Mahmudi
,
R.
,
Geranmayeh
,
A. R.
,
Noori
,
H.
, and
Shahabi
,
M.
, 2008, “
Impression Creep of Hypoeutectic Sn–Zn Lead-Free Solder Alloys
,”
Mater. Sci. Eng., A
0921-5093,
491
, pp.
110
116
.
16.
Mahmudi
,
R.
,
Rezaee-Bazzaz
,
A.
, and
Banaie-Fard
,
H. R.
, 2007, “
Investigation of Stress Exponent in the Room-Temperature Creep of Sn–40Pb–2.5Sb Solder Alloy
,”
J. Alloys Compd.
0925-8388,
429
, pp.
192
197
.
17.
Park
,
C.
,
Long
,
X.
,
Haberman
,
S.
,
Ma
,
S.
,
Dutta
,
I.
,
Mahajan
,
R.
, and
Jadhav
,
S. G.
, 2007, “
A Comparison of Impression and Compression Creep Behavior of Polycrystalline Sn
,”
J. Mater. Sci.
0022-2461,
42
, pp.
5182
5187
.
18.
Mahmudi
,
R.
,
Geranmayeh
,
A. R.
, and
Rezaee-Bazzaz
,
A.
, 2007, “
Impression Creep Behavior of Cast Pb–Sb Alloys
,”
J. Alloys Compd.
0925-8388,
427
, pp.
124
129
.
19.
Chu
,
S. N.
, and
Li
,
J. C. M.
, 1977, “
Impression Creep; A New Creep Test
,”
J. Mater. Sci.
0022-2461,
12
, pp.
2200
2208
.
20.
Raj
,
S. V.
, and
Langdon
,
T. G.
, 1989, “
Creep Behavior of Copper at Intermediate Temperatures—I. Mechanical Characteristics
,”
Acta Metall.
0001-6160,
37
, pp.
843
852
.
21.
Langdon
,
T. G.
, 2000, “
Identifiying Creep Mechanisms at Low Stresses
,”
Mater. Sci. Eng., A
0921-5093,
283
, pp.
266
273
.
22.
Mathew
,
M. D.
,
Yang
,
H.
,
Movva
,
S.
, and
Murty
,
K. L.
, 2005, “
Creep Deformation Characteristics of Tin and Tin-Based Electronic Solder Alloys
,”
Metall. Mater. Trans. A
1073-5623,
36
, pp.
99
105
.
23.
Frost
,
H. J.
, and
Ashby
,
M. F.
, 1982,
Deformation-Mechanism Maps, the Plasticity and Creep of Metals and Ceramics
,
Pergamon
,
Oxford, UK
, p.
21
.
24.
Poirier
,
J. P.
, 1985,
Creep of Crystals, High Temperature Deformation Processes in Metals, Ceramics, and Minerals
,
Cambridge University Press
,
New York
.
25.
Sherby
,
O. D.
, and
Burke
,
P. M.
, 1968, “
Mechanical Behavior of Crystalline Solids at Elevated Temperature
,”
Prog. Mater. Sci.
0079-6425,
13
, pp.
323
390
.
You do not currently have access to this content.