Tension-compression, torsion, and axial-torsion fatigue experiments were conducted on the AL6XN alloy to experimentally investigate the cyclic plasticity behavior and the fatigue behavior. The material is found to display significant nonproportional hardening when the equivalent plastic strain amplitude is over 2×104. In addition, the material exhibits overall cyclic softening. Under tension-compression, the cracking plane is perpendicular to the axial loading direction regardless of the loading amplitude. The smooth strain-life curve under fully reversed tension-compression can be described by a three-parameter power equation. However, the shear strain-life curve under pure torsion loading displays a distinct plateau in the fatigue life range approximately from 20,000 to 60,000 loading cycles. The shear strain amplitude corresponding to the plateau is approximately 1.0%. When the shear strain amplitude is above 1.0% under pure shear, the material displays shear cracking. When the shear strain amplitude is below 1.0%, the material displays tensile cracking. A transition from shear cracking to tensile cracking is associated with the plateau in the shear strain-life curve. Three different multiaxial fatigue criteria were evaluated based on the experimental results on the material for the capability of the criteria to predict fatigue life and the cracking direction. Despite the difference in theory, all the three multiaxial criteria can reasonably correlate the experiments in terms of fatigue life. Since the cracking mode of the material subjected to pure torsion is a function of the loading magnitude, the prediction of cracking orientation becomes rather challenging.

1.
Nemat-Nasser
,
S.
,
Guo
,
W.
, and
Kihl
,
D. P.
, 2001, “
Thermomechanical Response of AL6XN Stainless Steel Over a Wide Range of Strain Rates and Temperatures
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1823
1846
.
2.
Huang
,
Y. L.
,
Oguocha
,
I. N. A.
, and
Yannacopoulos
,
S.
, 2005, “
The Corrosion Wear Behavior of Selected Stainless Steels in Potash Brine
,”
Wear
0043-1648,
258
, pp.
1357
1363
.
3.
Anderko
,
A.
,
Sridhar
,
N.
,
Yang
,
L.
,
Grise
,
S. L.
,
Saldanha
,
B. J.
, and
Dorsey
,
M. H.
, 2005, “
Validation of Localized Corrosion Model Using Real Time Corrosion Monitoring in a Chemical Plant
,”
Corros. Eng., Sci. Tech.
1478-422X,
40
(
1
), pp.
33
42
.
4.
Zhang
,
L.
,
Han
,
E.
,
Zhang
,
Z.
,
Guan
,
H.
, and
Ke
,
W.
, 2003, “
The Corrosion of Stainless Steel and Nickel Base Alloys in Subcritical Water Condition
,”
Acta Metall. Sin.
0412-1961,
39
(
6
), pp.
649
654
.
5.
Lewis
,
A. C.
,
Bingert
,
J. F.
,
Rowenhorst
,
D. J.
,
Gupta
,
A.
,
Geltmacher
,
A. B.
, and
Spanos
,
G.
, 2006, “
Two-and Three-Dimensional Microstructural Characterization of a Super-Austenitic Stainless Steel
,”
Mater. Sci. Eng., A
0921-5093,
418
, pp.
11
18
.
6.
Stauffer
,
A. C.
,
Koss
,
D. A.
, and
McKirgan
,
J. B.
, 2004, “
Microstructural Banding and Failure of a Stainless Steel
,”
Metall. Mater. Trans. A
1073-5623,
35
(
4
), pp.
1317
1324
.
7.
Kusko
,
C. S.
,
Dupont
,
J. N.
, and
Marder
,
A. R.
, 2004, “
The Influence of Microstructure on Fatigue Crack Propagation Behaviour of Stainless Steel Welds
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
83
(
1
), pp.
6s
14s
.
8.
Metrovich
,
B.
,
Fisher
,
J. W.
,
Yen
,
B. T.
,
Kaufmann
,
E. J.
,
Cheng
,
X.
, and
Ma
,
Z.
, 2003, “
Fatigue Strength of Welded AL-6XN Superaustenitic Stainless Steel
,”
Int. J. Fatigue
0142-1123,
25
(
9–11
), pp.
1309
1315
.
9.
Guo
,
W.
, 2006, “
Plastic Flow Stresses and Constitutive Models of Four Newer Naval Vessel Steels
,”
Acta Metall. Sin.
0412-1961,
42
(
5
), pp.
463
468
.
10.
Dawson
,
P. R.
,
Boyce
,
D. E.
,
Hale
,
R.
, and
Durkot
,
J. P.
, 2005, “
An Isoparametric Piecewise Representation of the Anisotropic Strength of Polycrystalline Solids
,”
Int. J. Plast.
0749-6419,
21
(
2
), pp.
251
283
.
11.
Abed
,
F. H.
, and
Voyiadjis
,
G. Z.
, 2005, “
Plastic Deformation Modeling of AL-6XN Stainless Steel at low and High Strain Rates and Temperatures Using a Combination of bcc and fcc Mechanisms of Metals
,”
Int. J. Plast.
0749-6419,
21
(
8
), pp.
1618
1639
.
12.
Nadai
,
A.
, 1950,
Theory of Flow and Fracture of Solids
, 2nd ed.,
McGraw-Hill Book Company
,
New York
, Vol.
1
, pp
347
353
.
13.
Jiang
,
Y.
, and
Kurath
,
P.
, 1997, “
Non-Proportional Cyclic Deformation: Critical Experiments and Analytical Modeling
,”
Int. J. Plast.
0749-6419,
13
, pp.
743
763
.
14.
Krupp
,
U.
,
Christ
,
H. J.
,
Lezuo
,
P.
,
Maier
,
H. J.
, and
Teteruk
,
R. G.
, 2001, “
Influence of Carbon Concentration on Martensitic Transformation in Metastable Austenitic Steels Under Cyclic Loading Conditions
,”
Mater. Sci. Eng., A
0921-5093,
319–321
, pp.
527
530
.
15.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
, 1970, “
A Stress Strain Function for the Fatigue of Metals
,”
J. Mater.
0022-2453,
5
, pp.
767
778
.
16.
Socie
,
D. F.
, 1987, “
Multiaxial Fatigue Damage Models
,”
ASME J. Eng. Mater. Technol.
0094-4289,
109
, pp.
293
298
.
17.
Fatemi
,
A.
, and
Socie
,
D. F.
, 1988, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including out of Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
, pp.
149
165
.
18.
Fatemi
,
A.
, and
Kurath
,
P.
, 1988, “
Multiaxial Fatigue Life Predictions under the Influence of Mean Stress
,”
ASME J. Eng. Mater. Technol.
0094-4289,
110
, pp.
380
388
.
19.
Jiang
,
Y.
, 2000, “
A Fatigue Criterion for General Multiaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
23
, pp.
19
32
.
20.
Hua
,
C. T.
, and
Socie
,
D. F.
, 1984, “
Fatigue Damage in 1045 Steel Under Constant Amplitude Biaxial Loading
,”
Fatigue Engng. Mater. Struct.
,
7
(
3
), pp.
165
179
.
21.
Socie
,
D. F.
, and
Bannantine
,
J.
, 1987, “
Bulk Deformation Fatigue Damage Models
,”
Mater. Sci. Eng.
0025-5416,
A103
, pp.
3
13
.
22.
Jha
,
S. K.
,
Larsen
,
J. M.
,
Rosenberg
,
A. H.
, and
Hartman
,
G. A.
, 2003, “
Dual Fatigue Failure Modes in Ti-6Al-2Sn-4Zr-6Mo and Consequences on Probabilistic Life Prediction
,”
Scr. Mater.
1359-6462,
48
, pp.
1637
1642
.
23.
Zhao
,
T.
, and
Jiang
,
Y.
, 2008, “
Fatigue of 7075-T651 Aluminum Alloy
,”
Int. J. Fatigue
0142-1123,
30
, pp.
834
849
.
24.
Jiang
,
Y.
,
Hertel
,
O.
,
Hoffmeyer
,
J.
, and
Vormwald
,
M.
, 2007, “
An Experimental Evaluation of Three Critical Plane Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
0142-1123,
29
, pp.
1490
1502
.
25.
Gao
,
Z.
,
Zhao
,
T.
,
Wang
,
X.
, and
Jiang
,
Y.
, 2007, “
Multiaxial Fatigue of 16MnR Steel
,” ASME J Pressure Vessel Technol., in press.
You do not currently have access to this content.