Industrial boilers experience bulbous cracks in carbon steel water-wall tubes and other water-touched surfaces. Because these cracks are blunt and different from sharp fatigue cracks, they are generally referred to as stress-assisted corrosion (SAC) cracks. The performance of carbon steels in industrial boilers strongly depends on the formation and stability of the magnetite film on the waterside surface. To understand the mechanism for SAC crack initiation and propagation, slow strain rate tests were conducted in a recirculation autoclave under industrial boiler water conditions. The dissolved oxygen in the water was maintained from a negligible amount (5ppb) to 3ppm. The SAC crack initiation and propagation mechanism involves magnetite film damage and requires the presence of dissolved oxygen in the water. Increasing the test temperature accelerates the process. A mechanism for SAC cracking is proposed, and interrupted slow strain rate tests were carried out to validate this mechanism. Temperature and dissolved oxygen in boiler water are important factors in initiation and propagation of stress assisted corrosion cracks. SAC in boilers can be controlled by controlling the dissolved oxygen levels around 5ppb.

1.
Duquette
,
A. J.
, 1979,
Fatigue and Microstructure
,
American Society for Metals
, Metals Park, OH, pp.
335
363
.
2.
Dooley
,
R. B.
, 1992, “
A Vision for Reducing Boiler Tube Failures
,”
Power Eng. J.
0950-3366,
96
(
3
), pp.
33
37
.
3.
Robertson
,
J.
, 1989, “
The Mechanism of High Temperature Aqueous Corrosion of Steel
,”
Corros. Sci.
0010-938X,
29
(
11/12
), pp.
1275
1291
.
4.
Nagata
,
N.
, 1994, “
Environmentally Assisted Cracking of Structural Materials for Light Water Reactors
,” NRIM Special Report, No. 94-01, Tokyo.
5.
Atkinson
,
J. D.
, and
Forrest
,
J. E.
, 1985, “
Factors Influencing the Rate of Growth of Fatigue Cracks in RPV Steels Exposed to a Simulated PWR Primary Water Environment
,”
Corros. Sci.
0010-938X,
25
(
8/9
), pp.
633
650
.
6.
Wu
,
X.
, and
Katada
,
Y.
, 2004, “
Corrosion Fatigue Behavior of Low-Alloy Pressure Vessel Steels in High Temperature Water Under Multi-Factor Conditions
,”
ASME J. Pressure Vessel Technol.
0094-9930,
126
(
4
), pp.
466
472
.
7.
Field
,
E. M.
,
Stanley
,
R. C.
,
Adams
,
A. M.
, and
Holmes
,
D. R.
, 1963, “
The Growth, Structure and Breakdown of Magnetite Films on Mild Steel
,”
Proc. of 2nd Int. Conf. Metallic Corrosion
, New York, pp.
829
.
8.
Olive
,
J. M.
, 2002, “
A Perspective of Local Analysis of Corrosion-Fatigue Crack Initiation and Propagation
,”
Rev. Metall./Cah. Inf. Tech.
0035-1563,
99
(
5
), pp.
433
439
.
9.
Potter
,
E. C.
, and
Mann
,
G. M. W.
, 1961, “
Oxidation of Mild Steel in High-Temperature Aqueous Systems
,”
Proc. of 1st International Congress on Metallic Corrosion
,
Butterworks
, London, pp.
417
.
10.
Leis
,
B. N.
, and
Colwell
,
J. A.
, 1997, “
Initiation of Stress-Corrosion Cracking on Gas Transmission Piping
,”
Effects of the Environment on the Initiation of Crack Growth
,
W. A.
Van Der Sluys
,
R. S.
Piascik
, and
R. Z.
Awierucha
, eds.,
American Society for Testing and Materials
, Philadelphia, ASTM STP 1298, pp.
34
58
.
11.
Potter
,
E. C.
, and
Mann
,
G. M. W.
, 1963, “
Mechanism of Magnetite Growth on Low-Carbon Steel in Steam and Aqueous Solutions up to 550 Degrees C
,”
Proc. of 2nd International Congress on Metallic Corrosion
, New York, Butterworks, London, pp.
872
.
12.
Desch
,
P. B.
, and
Dillon
,
J. J.
, 2004, “
Case Histories of Stress-Assisted Corrosion in Boilers
,” Corrosion 2004, Paper No. 04516.
13.
Sylvester
,
W. R.
, and
Sidla
,
G.
, 1990, “Waterside Stress-Assisted Corrosion Cracking in Boilers,” Pulp & Paper Canada, 91(6), pp. 151–155.
14.
Singh
,
P. M.
,
Perdomo
,
J. J.
,
Mahmood
,
J.
, and
Conde
,
P.
, 2005, “Stress-Assisted Corrosion Simulation in the Laboratory,” Power Plant Chem., 7(3), pp. 155–161.
15.
Sarma
,
G. B.
,
Pawel
,
S. J.
, and
Singh
,
P. M.
, 2006, “
Modeling of Recovery Boiler Tube Wall Panels to Investigate the Effect of Attachment Welds on Stress-Assisted Corrosion
,” Corrosion 2006, Paper No. 06240, San Diego.
16.
Yang
,
D.
,
Singh
,
P. M.
, and
Neu
,
R. W.
, 2006, “
Initiation and Propagation of Stress Assisted Corrosion (SAC) in Carbon Steel Boiler Tubes
,” Corrosion 2006, Paper No. 06241, San Diego.
17.
Yang
,
D.
,
Singh
,
P. M.
, and
Neu
,
R. W.
, 2005, “
Effect of Boiler Water Chemistry on Corrosion and Corrosion Fatigue of Carbon Steels
,”
Proc. of 16th International Corrosion Congress
, BJ, China.
18.
Yang
,
D.
,
Singh
,
P. M.
, and
Neu
,
R. W.
, 2006, “
Factors Affecting Stress Assisted Corrosion Cracking of Carbon Steels
,”
Proc. of 9th International Fatigue Congress
, Paper No. FT 383, Atlanta.
19.
Sharp
,
W. B. A.
, 2004, “
An Overview of Stress-Assisted Corrosion in the Pulp and Paper Industry
,” Corrosion 2004, Paper No. 04513.
20.
Sharp
,
W. B. A.
, 2004, “
The Strength of Recovery Boiler Tubes Containing Stress-Assisted Corrosion
,”
Proc. of 11th International Symposium on Corrosion in the Pulp and Paper Industry
, pp.
193
205
.
21.
Esmacher
,
M. J.
,
Johnston
,
N. N.
, and
Sargent
,
M. A.
, 2005, “
Minimizing the Impact of Stress-Assisted Corrosion in Paper Mill Boilers
,” TAPPI Engineering, Pulping and Environmental Conference, Philadelphia.
22.
Hargrave
,
R.
,
Esmacher
,
M. J.
, and
Johnston
,
N.
, 2004, “
Stress-Assisted Corrosion in Recovery Boilers
,” Corrosion 2004, Paper No. 04514.
23.
Sidey
,
D.
,
Coade
,
R. W.
, and
Patterson
,
R. W.
, 1987, “
Corrosion-Fatigue Boiler Tube Failures in Waterwalls and Economizer
,”
Proc. of Boiler Tube Failures in Fossil Power Plants
, Atlanta.
24.
Labuda
,
E. M.
, and
Bartholomew
,
R. D.
, 2004, “
Stress-Assisted Corrosion: Case Histories
,” Corrosion 2004, Paper No. 04520.
25.
Dooley
,
R. B.
, 1992, “
A Vision for Reducing Boiler Tube Failures: Part II
,”
Power Eng. J.
0950-3366,
96
(
3
), pp.
41
42
.
26.
Schoch
,
W.
, and
Spahn
,
H.
, 1973,
Proc. of Corrosion Fatigue: Chemistry, Mechanics, and Microstructure
, Storrs, CT, 1971, NACE, Houston, pp.
52
.
27.
Marsh
,
T. F.
, 1966, “
Morphology of Magnetite Growth on Mild Steel in Alkaline solutions
,”
J. Electrochem. Soc.
0013-4651,
113
(
4
), pp.
313
318
.
28.
Bloom
,
M. C.
,
Newport
,
G. N.
, and
Fraser
,
W. A.
, 1964, “
Steel Corrosion Mechanisms
,”
J. Electrochem. Soc.
0013-4651,
111
(
12
), pp.
1343
1347
.
29.
Castle
,
J. E.
, and
Mann
,
G. M. W.
, 1966, “
The mechanism of Formation of a Porous Oxide Film on Steel
,”
Corros. Sci.
0010-938X,
6
, pp.
253
262
.
30.
Bulloch
,
J. H.
, 1996, “
Deaerator Feedwater Storage Vessel Weldment Cracking: Some Fractographic and Crack Extension Details
,”
Int. J. Pressure Vessels Piping
0308-0161,
68
, pp.
81
97
.
31.
Wright
,
M. D.
, 2000, “Stress Corrosion-Cracking of Carbon and Low-Alloy Steels in Nuclear Power Plant Pressure Vessels and Piping,” Assess. Method. Prevent. Failure, 410(2), pp. 147–162.
32.
Hickling
,
J.
, and
Blind
,
D.
, 1986, “
Strain-Induced Corrosion Cracking of Low-Alloy Steels in LWR Systems—Case Histories and Identification of Conditions Leading to Susceptibility
,”
Nucl. Eng. Des.
0029-5493,
91
, pp.
305
330
.
33.
Lenz
,
E.
, and
Wieling
,
N.
, 1986, “
Strain-Induced Corrosion Cracking of Low-Alloy Steels in LWR-Systems—Interpretation of Susceptibility by Means of a Three Dimensional (T, έ, Dissolved Oxygen) Diagram
,”
Nucl. Eng. Des.
0029-5493,
91
, pp.
331
344
.
34.
Scott
,
P. M.
, and
Tice
,
D. R.
, 1990, “
Stress Corrosion in Low Alloy Steels
,”
Nucl. Eng. Des.
0029-5493,
119
, pp.
399
413
.
35.
Prepared by Aptech Engineering Services, Inc.
, 1993, EPRI Technical Report No. 102433-V1, Boiler Tube Failure/Metallurgical Guide.
36.
Seifert
,
H. P.
,
Ritter
,
S.
, and
Hickling
,
J.
, 2004, “Research and Service Experience With Environmentally Assisted Cracking of Low-Alloy Steel Pressure-Boundary Components Under LWR Conditions,” Power Plant Chem., 6(2), pp. 111–123.
37.
Congleton
,
J.
, and
Charles
,
E. A.
, 2001, “
Stress Corrosion of Iron-Base Alloys in High Temperature Water Environment
,” Chemistry and Electrochemistry of Stress Corrosion Cracking: A Symposium Honoring the Contributions of R. W. Staehle, R. H. Jones, ed., TMS.
38.
Parkins
,
R. N.
, and
Singh
,
P. M.
, 1990, “
Stress Corrosion Crack Coalescence
,”
Corrosion (Houston)
0010-9312,
46
(
6
), pp.
485
499
.
39.
Parkins
,
R. N.
, and
Singh
,
P. M.
, 1992, “
The Nucleation and Coalescence of Short Cracks in Cyclically Loaded Ferritic Steel Exposed to a Carbonate-Bicarbonate Solution
,”
Short Fatigue Cracks
,
Mechanical Engineering Publications
, London,
K. J.
Miller
, and
E. R.
de los Rois
, ed., ESIS 13.
You do not currently have access to this content.