This paper presents an extended stress-based forming limit curve (XSFLC) that can be used to predict the onset of necking in sheet metal loaded under non-proportional load paths, as well as under three-dimensional stress states. The conventional strain-based ϵFLC is transformed into the stress-based FLC advanced by Stoughton (1999, Int. J. Mech. Sci., 42, pp. 1–27). This, in turn, is converted into the XSFLC, which is characterized by the two invariants, mean stress and equivalent stress. Assuming that the stress states at the onset of necking under plane stress loading are equivalent to those under three-dimensional loading, the XSFLC is used in conjunction with finite element computations to predict the onset of necking during tubular hydroforming. Hydroforming of straight and pre-bent tubes of EN-AW 5018 aluminum alloy and DP 600 steel are considered. Experiments carried out with these geometries and alloys are described and modeled using finite element computations. These computations, in conjunction with the XSFLC, allow quantitative predictions of necking pressures; and these predictions are found to agree to within 10% of the experimentally obtained necking pressures. The computations also provide a prediction of final failure location with remarkable accuracy. In some cases, the predictions using the XSFLC show some discrepancies when compared with the experimental results, and this paper addresses potential causes for these discrepancies. Potential improvements to the framework of the XSFLC are also discussed.

1.
Keeler
,
S. P.
, and
Backofen
,
W. A.
, 1963, “
Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches
,”
ASM Trans. Q.
0097-3912,
56
, pp.
25
48
.
2.
Goodwin
,
G. M.
, 1968, “
Application of Strain Analysis to Sheet Metal Forming in the Press Shop
,” SAE Paper, No. 680093.
3.
Ghosh
,
A. K.
, and
Laukonis
,
J. V.
, 1976, “
The Influence of Strain Path Changes on the Formability of Sheet Steel
,”
9th Biennial Congress of The International Deep Drawing Research Group, Sheet Metal Forming and Energy Conservation
,
ASM
, Metals Park, OH.
4.
Graf
,
A.
, and
Hosford
,
W.
, 1993, “
Effect of Changing Strain Paths on Forming Limit Diagrams of Al 2008-T4
,”
Metall. Trans. A
0360-2133,
24A
, pp.
2503
2512
.
5.
Stoughton
,
T. B.
, 1999, “
A General Forming Limit Criterion for Sheet Metal Forming
,”
Int. J. Mech. Sci.
0020-7403,
42
, pp.
1
27
.
6.
Stoughton
,
T. B.
, 2001, “
Stress-Based Forming Limits in Sheet-Metal Forming
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
(
4
), pp.
417
422
.
7.
Embury
,
J. D.
, and
LeRoy
,
G. H.
, 1977, “
Failure Maps Applied to Metal Deformation Processes
,”
Advances in Research on the Strength and Fracture of Materials
,
Pergamon Press
, London, pp.
15
42
.
8.
Koç
,
M.
, and
Altan
,
T.
, 2001, “
An Overall Review of the Tube Hydroforming (THF) Technology
,”
J. Mater. Process. Technol.
0924-0136,
108
(
3
), pp.
384
393
.
9.
Gotoh
,
M.
,
Chung
,
C.
, and
Iwata
,
N.
, 1995, “
Effect of Out-of-Plane Stress on the Forming Limit Strain of Sheet Metals
,”
JSME Int. J., Ser. A
1340-8046,
38
(
1
), pp.
123
132
.
10.
Smith
,
L. M.
,
Averill
,
R. C.
,
Lucas
,
J. P.
,
Stoughton
,
T. B.
, and
Matin
,
P. H.
, 2003, “
Influence of Transverse Normal Stress on Sheet Metal Formability
,”
Int. J. Plast.
0749-6419,
19
(
10
), p.
1567
-
1583
.
11.
Saanouni
,
K.
,
Nesnas
,
K.
, and
Hammi
,
Y.
, 2000, “
Damage Modeling in Metal Forming Processes
,”
Int. J. Damage Mech.
1056-7895,
9
, pp.
196
240
.
12.
Cherouat
,
A.
,
Saanouni
,
K.
, and
Hammi
,
Y.
, 2002, “
Numerical Improvement of Thin Tubes Hydroforming With Respect to Ductile Damage
,”
Int. J. Mech. Sci.
0020-7403,
44
(
12
), pp.
2427
2446
.
13.
Baradari
,
G. J.
, 2006, “
Damage in Hydroforming of Pre-Bent Aluminum Alloy Tubes
,” Ph.D. thesis, Department of Mechanical Engineering, University of Waterloo.
14.
Gurson
,
A. L.
, 1977, “
Continuum Theory and Ductile Rupture by Void Nucleation and Growth: Part I — Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
(
1
), pp.
2
15
.
15.
Tvergaard
,
V.
, and
Neeldeman
,
A.
, 1984, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
0001-6160,
32
, pp.
157
169
.
16.
Gholipour
,
J.
,
Worswick
,
M. J.
, and
Oliveira
,
D.
, 2004, “
Application of Damage Models in Bending and HydroForming of Aluminum Alloy Tube
,” SAE 2004 World Congress, SAE Paper No. 2004-01-0835.
17.
Dwyer
,
N.
,
Worswick
,
M. J.
,
Gholipour
,
J.
,
Xia
,
C.
, and
Khodayari
,
G.
, 2002, “
Pre-Bending and Subsequent Hydroforming of Tube: Simulation and Experiment
,”
NUMIFORM 2002, Proceedings of the 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes
, Jaejon Korea, pp.
447
452
.
18.
Oliveira
,
D. A.
,
Worswick
,
M. J.
, and
Grantab
,
R.
, 2005, “
Effect of Lubricant in Mandrel-Rotary Draw Tube Bending of Steel and Aluminum
,”
Can. Metall. Q.
0008-4433,
44
, pp.
71
78
.
19.
Dyment
,
J.
,
Worswick
,
M.
,
Normani
,
F.
,
Oliveira
,
D.
, and
Khodayari
,
G.
, 2003, “
Effect of Endfeed on Strains and Thickness During Bending and on the Subsequent Hydroformability of Steel Tubes
,”
Proceedings IBEC2003
, SAE Paper No. 2003-01-2837.
20.
Khodayari
,
G.
, 2001, “
Final Report– USAMP Hydroforming of Aluminum Tubes
,” Technical Report,
Industrial Research and Development Institute
.
21.
Keeler
,
S. P.
, and
Brazier
,
W. G.
, 1977, “
Relationship Between Laboratory Material Characterization and Press Shop Formability
,”
Proc. of Microalloy 75
, Union Carbide, New York, pp.
447
452
.
22.
Wilkins
,
M. L.
, 1964, “
Calculation of Elastic-Plastic Flow
,”
Methods in Computational Physics, Vol. 3, Fundamental Methods in Hydrodynamics
,
Academic Press
, New York.
23.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
, New York.
24.
Koc
,
M.
,
Aue-u-lan
,
Y.
, and
Altan
,
T.
, 2001, “
On the Characteristics of Tubular Materials for Hydroforming: Experimentation and Analysis
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
(
5
), pp.
761
772
.
25.
Levy
,
B. S.
,
Tyne
,
C. J. V.
, and
Stringfield
,
J. M.
, 2004, “
Characterizing Steel Tube for Hydroforming Applications
,”
J. Mater. Process. Technol.
0924-0136,
150
(
3
), pp.
280
289
.
26.
Belytschko
,
T.
,
Lin
,
J.
, and
Tsay
,
C. S.
, 1984, “
Explicit Algorithms for the Nonlinear Dynamics of Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
42
, pp.
225
251
.
27.
Bardelcik
,
A.
, and
Worswick
,
M. J.
, 2005, “
Evaluation of Load Control End-Feed in Hydroforming of Pre-Bent DP600 Steel Tube Using the Extended Stress-Based Forming Limit Curve (XSFLC) Failure Criterion
,” Numerical Methods in Continuum Mechanics 2005.
28.
Prier
,
M.
, and
Schmoeckel
,
D.
, 1999, “
Tribology of Internal High Pressure Forming
,”
Proceedings of Internatioinal Conference on Hydroforming, Stuttgart, Germany
,
Stuttgart, Germany
.
29.
Koç
,
M.
, 2003, “
Tribological Issues in the Tube Hydroforming Process-Selection of a Lubricant for Robust Process Conditions for an Automotive Structural Frame Part
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
3
), pp.
484
92
.
30.
Ngaile
,
G.
,
Jaeger
,
S.
, and
Altan
,
T.
, 2004, “
Lubrication in Tube Hydroforming (THF): Part II. Performance Evaluation of Lubricants Using LDH Test and Pear-Shaped Tube Expansion Test
,”
J. Mater. Process. Technol.
0924-0136,
146
(
1
), pp.
116
123
.
31.
Vollertsen
,
F.
, and
Plancak
,
M.
, 2002, “
On Possibilities for the Determination of the Coefficient of Friction in Hydroforming of Tubes
,”
J. Mater. Process. Technol.
0924-0136,
125–126
, pp.
412
420
.
32.
Schey
,
J. A.
, and
Nautiyal
,
C.
, 1990, “
Effects of Surface Roughness on Friction and Metal Transfer in Lubricated Sliding of Aluminum Alloys Against Steel Surfaces
,”
Wear
0043-1648,
146
, pp.
37
51
.
33.
Hallquist
,
J. O.
, 1998,
LS-DYNA — Theoretical Manual
,
Livermore Software Technology Corp.
,
Livermore, CA
34.
Green
,
D. E.
, and
Stoughton
,
T. B.
, 2004, “
Evaluating Hydroforming Severity Using Stress-Based Forming Limits
,” Second Annual Hydroforming Conference.
35.
Zandrahimi
,
M.
,
Platias
,
S.
,
Price
,
D.
,
Barrett
,
D.
,
Bate
,
P.
,
Roberts
,
W.
, and
Wilson
,
D.
, 1989, “
Effects of Changes in Strain Path on Work Hardening in Cubic Metals
,”
Metall. Trans. A
0360-2133,
20A
(
11
), pp.
2471
2482
.
36.
Lloyd
,
D. J.
, and
Sang
,
H.
, 1979, “
Influence of Strain Path on Subsequent Mechanical Properties—Orthogonal Tensile Paths
,”
Metall. Trans. A
0360-2133,
10A
(
11
), pp.
1767
1772
.
37.
Laukonis
,
J. V.
, and
Ghosh
,
A. K.
, 1978, “
Effect of Strain Path Changes on the Formability of Sheet Metals
,”
Metall. Trans. A
0360-2133,
9A
(
12
), pp.
1849
1856
.
38.
Yoshida
,
K.
,
Kuwabara
,
T.
, and
Kuroda
,
M.
, 2005, “
Forming Limit Stresses of Sheet Metal Under Proportional and Combined Loadings
,”
NUMISHEET 2005: Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process
,
Smith
,
L. M.
,
Pourboghrat
,
F.
,
Yoon
,
J.-W.
, and
Stoughton
,
T. B.
, eds.,
AIP
, New York, Vol.
778
.
You do not currently have access to this content.