A fully nonlinear finite element analysis for prediction of localization∕delocalization and compression fracture of moderately thick imperfect transversely isotropic rings, under applied hydrostatic pressure, is presented. The combined effects of modal imperfections, transverse shear∕normal deformation, geometric nonlinearity, and bilinear elastic (a special case of hypoelastic) material property on the emergence of interlaminar shear crippling type instability modes are investigated in detail. An analogy to a soliton (slightly disturbed integrable Hamiltonian system) helps understanding the localization (onset of deformation softening) and delocalization (onset of deformation hardening) phenomena leading to the compression damage∕fracture at the propagation pressure. The primary accomplishment is the (hitherto unavailable) computation of the mode II fracture toughness (stress intensity factor∕energy release rate) and shear damage∕crack bandwidth, under compression, from a nonlinear finite element analysis, using Maxwell’s construction and Griffith’s energy balance approach. Additionally, the shear crippling angle is determined using an analysis, pertaining to the elastic plane strain inextensional deformation of the compressed ring. Finally, the present investigation bridges a gap of three or more orders of magnitude between the macro-mechanics (in the scale of mms and up) and micro-mechanics (in the scale of microns) by taking into account the effects of material and geometric nonlinearities and combining them with the concepts of phase transition via Maxwell construction and Griffith-Irwin fracture mechanics.

1.
Couch
,
W. P.
,
Ward
,
G. D.
, and
Blumenberg
,
W. F.
, 1969, “
Investigation of Filament-Reinforced Plastic Deep Submergence Pressure Hulls—July 1966 to March 1969
,” Department of the Navy, Naval Ship Research & Development Center, Washington, DC.
2.
Garala
,
H. J.
, 1989, “
Structural Evaluation of 8-Inch Diameter Graphite-Epoxy Composite Cylinders Subjected to External Hydrostatic Compressive Loading
,” Naval Surface Warfare Center (NSWC) Report, DTRC-89∕016, Carderock, MD.
3.
Garala
,
H. J.
, and
Chaudhuri
,
R. A.
, 1993, “
Structural Evaluation of Advanced Composite Thick-Section Cylinders Under Biaxial Compression
,”
Mech. Thick Composites
,
162
, pp.
227
236
.
4.
Abdallah
,
M. G.
,
Gascoigne
,
H. E.
,
Cairnes
,
D. S.
, and
Patton
,
K. B.
, 1990, “
Measurement of Deformation in Thick Composite Rings Subjected to External Pressure
,” presented at SEM’s Spring Conference on
Experimental Mechanics and Manufacturer’s Exhibit
, Albuquerque, NM.
5.
Chaudhuri
,
R. A.
, 1991, “
Prediction of the Compressive Strength of Thick-Section Advanced Composite Laminates
,”
J. Compos. Mater.
0021-9983,
25
, pp.
1244
1276
.
6.
Chaudhuri
,
R. A.
, and
Kim
,
D. J.
, 2003, “
Localization and Shear-Crippling Instability in a Thick Imperfect Laminated Composite Ring Under Hydrostatic Pressure
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
7063
7092
.
7.
Chaudhuri
,
R. A.
,
Xie
,
M.
, and
Garala
,
H. J.
, 1996, “
Stress Singularity Due to Kink Band Weakening a Unidirectional Composite Under Compression
,”
J. Compos. Mater.
0021-9983,
30
, pp.
672
691
.
8.
Chaudhuri
,
R. A
, and
Garala
,
H. J.
, 1995, “
Analytical∕Experimental Evaluation of Hybrid Commingled Carbon∕Glass∕Epoxy Thick-Section Composites Under Compression
,”
J. Compos. Mater.
0021-9983,
29
, pp.
1695
1718
.
9.
Chaudhuri
,
R. A.
, and
Kim
,
D. J.
, 1997, “
On Propagation of Shear Crippling (Kink Band) Instability in a Long Thick Laminated Composite Imperfect Cylindrical Shell Under External Pressure
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
3455
3486
.
10.
Kim
,
D. J.
, and
Chaudhuri
,
R. A.
, 2005, “
Influence of Localized Imperfection on the Instability of Isotropic∕Cross-Ply Cylindrical Shells∕Rings Under External Pressure
,”
Compos. Struct.
0263-8223,
67
, pp.
57
70
.
11.
Kim
,
D. J.
, and
Chaudhuri
,
R. A.
, 2005, “
Localized Buckling of a Bilinear Elastic Ring Under External Pressure
,”
J. Eng. Mech.
0733-9399,
131
, pp.
221
224
.
12.
Kim
,
D. J.
, and
Chaudhuri
,
R. A.
, “
Postbuckling of Moderately Thick Imperfect Rings Under External Pressure
,”
J. Eng. Mech.
(in press).
13.
Hsia
,
R. L.
, and
Chaudhuri
,
R. A.
, 1996, “
Geometrically Nonlinear Analysis of a Cylindrical Shell Using Surface-Parallel Quadratic Elements
,”
Comput. Struct.
0045-7949,
61
, pp.
1143
1154
.
14.
Kim
,
D. J.
, and
Chaudhuri
,
R. A.
, 1995, “
Full and von Karman Geometrically Nonlinear Analyses of Laminated Cylindrical Panels
,”
AIAA J.
0001-1452,
33
, pp.
2173
2181
.
15.
Chaudhuri
,
R. A.
, and
Hsia
,
R. L.
, 1998, “
Effect of Thickness on the Large Elastic Deformation Behavior of Laminated Shells
,”
Compos. Struct.
0263-8223,
43
, pp.
117
128
.
16.
Chaudhuri
,
R. A.
, and
Hsia
,
R. L.
, 1999, “
Effect of Thickness on the Large Deflection Behavior of Laminated Shells
,”
AIAA J.
0001-1452,
37
, pp.
403
405
.
17.
Halpin
,
J. C.
, 1992,
Primer on Composite Materials Analysis
, 2nd ed.,
Technomic
,
Lancaster, PA
.
18.
Plastics for Aerospace Vehicles
, 1971, Part 1, Reinforced Plastics, Military Handbook, MILHDBK-17A, January.
19.
Ott
,
E.
, 1993,
Chaos in Dynamical Systems
,
Cambridge University Press
,
Cambridge, UK
.
20.
Kardomateas
,
G. A.
, 1993, “
Buckling of Thick Orthotropic Cylindrical Shells Under External Pressure
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
195
202
.
21.
Fermi
,
E.
,
Pasta
,
J.
, and
Ulam
,
S. M.
, 1953, “
Studies in Nonlinear Problems
,” Tech. Rept. LA-1940, Los Alamos Sci. Lab.
22.
Strogatz
,
S.
, 2003, “
The Origins of Computer Simulation: The Real Scientific Hero of 1953
,”
New York Times
, March 4, p.
A25
.
23.
Berdichevsky
,
V. L.
, 1997,
Thermodynamics of Chaos and Order
,
Addison Wesley Longman
,
Essex, UK
.
24.
Zabusky
,
N. J.
, and
Kruskal
,
M. D.
, 1965, “
Interaction of Solitons in a Collisionless Plasma and the Recurrence of Initial States
,”
Phys. Rev. Lett.
0031-9007,
15
, pp.
240
243
.
25.
Pathria
,
R. K.
, 1977,
Statistical Mechanics
.
Pergamon
,
Oxford
.
26.
Anderson
,
T. L.
, 1995,
Fracture Mechanics Fundamentals and Applications
, 2nd ed.,
CRC
,
Boca Raton, FL
.
27.
Hertzberg
,
R. W.
, 1996,
Deformation and Fracture Mechanics of Engineering Materials
, 4th ed.,
Wiley
,
New York
.
28.
Collings
,
T. A.
, 1974, “
Transverse Compressive Behavior of Unidirectional Carbon Fiber Reinforced Plastics
,”
Composites
0010-4361,
5
, pp.
108
116
.
You do not currently have access to this content.