In order to develop a procedure for evaluating the degradation of impact toughness in directionally solidified Ni-base superalloy CM247LC, which is commonly used for advanced gas turbine blades, the change in small punch (SP) fracture energy due to thermal aging has been investigated. The SP testing technique has been applied to materials aged under various aging conditions, and correlation with the results of Charpy V-notch impact tests has been examined. The experimental results reveal that SP fracture energy at room temperature decreases with aging at 800 °C and is uniquely correlated with high-temperature Charpy impact toughness. The current experiment has shown that the SP testing technique is useful in evaluating the degree of thermal aging embrittlement, one of the parameters required for remaining-life prediction of aged components.

1.
Susukida
,
H.
,
Sakumoto
,
Y.
,
Tsuji
,
I.
, and
Kawai
,
H.
, 1973, “
Strength and Microstructure of Nickel-Base Superalloys After Long Term Heating
,” Mitsubishi Technical Bulletin, 86, Mitsubishi Heavy Industries, Ltd.
2.
Leverant
,
G. R.
, and
McMinn
,
A.
, 1987, “
Analysis of Cracked Udimet 720 Gas Turbine Blades
,” Report on Project RP2775-4, Electric Power Research Institute, Palo Alto, CA.
3.
Stringer
,
J.
, and
Viswanathan
,
R.
, 1993, “
Gas Turbine Hot-Section Materials and Coatings in Electric Utility Applications
,”
Proceedings of the ASM 1993 Materials Congress Materials Week '93
,
V. P.
Swaminathan
and
N. S.
Cheruvu
, eds.,
ASM International
,
Materials Park, OH
, pp.
1
21
.
4.
Pard
,
A. G.
, 1989, “
Service Embrittlement of Gas Turbine Blade Alloys Udimet 710 and IN-738
,” Report on Project RP2775-1, Electric Power Research Institute, Palo Alto, CA.
5.
Kameda
,
J.
, and
Buck
,
O.
, 1986, “
Evaluation of the Ductile-to-Brittle Transition Temperature Shift Due to Temper Embrittlement and Neutron Irradiation by Means of a Small-Punch Test
,”
Mater. Sci. Eng.
0025-5416,
83
, pp.
29
38
.
6.
Misawa
,
T.
,
Adachi
,
T.
,
Saito
,
M.
, and
Hamaguchi
,
Y.
, 1987, “
Small Punch Tests for Evaluating Ductile-Brittle Transition Behavior of Irradiated Ferritic Steels
,”
J. Nucl. Mater.
0022-3115,
150
, pp.
194
202
.
7.
Joo
,
Y. H.
,
Hashida
,
T.
, and
Takahashi
,
H.
, 1992, “
Determination of Ductile-Brittle Transition Temperature (DBTT) in Dynamic Small Punch Test
,”
J. Test. Eval.
0090-3973,
20
, pp.
6
14
.
8.
Baik
,
J. M.
,
Kameda
,
J.
, and
Buck
,
O.
, 1983, “
Small Punch Test Evaluation of Intergranular Embrittlement of an Alloy Steel
,”
Scr. Metall.
0036-9748,
17
, pp.
1443
1447
.
9.
Matsushita
,
T.
,
Saucedo-Munoz
,
M. L.
,
Joo
,
Y. H.
, and
Shoji
,
T.
, 1990, “
DBTT Estimation of Ferritic Low Alloy Steels in Service Plant by Means of Small Punch Test
,”
Proceedings of the KSME/JSME Joint Conference, Fracture and Strength ’90
, Korean Society of Mechanical Engineers, Seoul, pp.
259
264
.
10.
Mao
,
X.
,
Shoji
,
T.
, and
Takahashi
,
H.
, 1987, “
Characterization of Fracture Behavior in Small Punch Test by Combined Recrystallization-Etch Method and Rigid Plastic Analysis
,”
J. Test. Eval.
0090-3973,
15
, pp.
30
37
.
11.
Mao
,
X.
, and
Takahashi
,
H.
, 1987, “
Development of a Further-Miniaturized Specimen of 3 mm Diameter for TEM Disk (ϕ3mm) Small Punch Tests
,”
J. Nucl. Mater.
0022-3115,
150
, pp.
42
52
.
12.
Komazaki
,
S.
,
Hashida
,
T.
,
Shoji
,
T.
, and
Suzuki
,
K.
, 2000, “
Development of Small Punch Tests for Creep Property Measurement of Tungsten Alloyed 9%Cr Ferritic Steels
,”
J. Test. Eval.
0090-3973,
28
, pp.
249
256
.
13.
Saucedo-Munoz
,
M. L.
,
Komazaki
,
S.
,
Takahashi
,
T.
,
Hashida
,
T.
, and
Shoji
,
T.
, 2002, “
Creep Property Measurement of Service-Exposed SUS 316 Austenitic Stainless Steel by the Small-Punch Creep-Testing Technique
,”
J. Mater. Res.
0884-2914,
17
, pp.
1945
1953
.
14.
Zhai
,
P. C.
,
Hashida
,
T.
,
Komazaki
,
S.
, and
Zhang
,
Q. J.
, 2004, “
Numerical Analysis for Small Punch Creep Tests by Finite Element Method
,”
J. Test. Eval.
0090-3973,
32
, pp.
298
303
.
15.
Komazaki
,
S.
,
Shoji
,
T.
, and
Sato
,
M.
, 2000, “
Creep Life Prediction of Ni-Base Superalloy Used in Advanced Gas Turbine Blades by Electrochemical Method
,”
JSME Int. J., Ser. A
1340-8046,
43
, pp.
156
165
.
16.
Komazaki
,
S.
, and
Shoji
,
T.
, 1997, “
Formation of the Al-Rich Phase on Grain Boundary and the Creep Damage Mechanism in Directionally Solidified Ni-Base Superalloy
,”
Metall. Mater. Trans. A
1073-5623,
28A
, pp.
1945
1949
.
17.
Viswanathan
,
R.
, 1989,
Damage Mechanisms and Life Assessment of High-Temperature Components
,
ASM International
, Metals Park, Ohio.
18.
Sims
,
C. T.
,
Stoloff
,
N. S.
, and
Hagel
,
W. C.
, 1987,
Superalloy II
,
Wiley
, New York.
19.
Saucedo-Munoz
,
M. L.
,
Liu
,
S. C.
,
Komazaki
,
S.
,
Kwon
,
I.-H.
,
Hashida
,
T.
,
Takahashi
,
H.
, and
Nakajima
,
H.
, 2002, “
Evaluation of Thermal Aging Embrittlement of Austenitic Stainless Steels JN1, JJ1, and JK2 by Cryogenic Small-Punch Testing
,”
J. Mater. Res.
0884-2914,
17
, pp.
852
860
.
You do not currently have access to this content.