Nanocomposite thin films which consist of 50nmAl2O3 nanoparticles in a copper metal matrix were deposited on a silicon wafer. The thickness of the nanocomposite thin films was about 3microns and the volume density of the nanoparticles was between 3% and 5%. The films were synthesized using electrocodeposition. The grain size of the nanocomposite film was significantly smaller than the grain size of control films of pure copper. Electron backscatter diffraction (EBSD) experiments indicate that neither the nanocomposite thin films nor the control films exhibits a crystallographic texture. Nanoindentation experiments show that the hardness of the nanocomposite thin film is approximately 25% higher than the hardness of the control films of pure copper. A prototype of a microchannel array in the nanocomposite thin film was made using standard microelectromechanical (MEMS) fabrication technology. It is expected that the enhanced mechanical properties exhibited by nanocomposite thin films have the potential to improve the reliability of various MEMS devices which rely on thin metal films. The results presented herein lay the groundwork for future studies in which the size, volume density, morphology, distribution as well as type of nanoparticle in the nanocomposite will be systematically and independently varied in order to optimize mechanical properties.

1.
Hardwick
,
D. A.
, 1987, “
Mechanical Properties of Thin Films—A Review
,”
Thin Solid Films
0040-6090,
154
, pp.
109
124
.
2.
Vinci
,
R. P.
, and
Vlassak
,
J. J.
, 1996, “
Mechanical Behavior of Thin Films
,”
Annu. Rev. Mater. Sci.
0084-6600,
26
, pp.
431
462
.
3.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 2004, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
0884-2914,
19
, pp.
3
20
.
4.
Srikar
,
V. T.
, and
Spearing
,
S. M.
, 2003, “
A Critical Review of Microscale Mechanical Testing Methods Used in the Design of Microelectromechanical Systems
,”
Exp. Mech.
0014-4851,
43
, pp.
238
247
.
5.
Yang
,
N. Y. C.
,
Headley
,
T. J.
,
Kelly
,
J. J.
, and
Hruby
,
J. M.
, 2004, “
Metallurgy of High Strength Ni-Mn Microsystems Fabricated by Electrodeposition
,”
Scr. Mater.
1359-6462,
51
, pp.
761
766
.
6.
Malone
,
G. A.
, 1987, “
New Developments in Electroformed Nickel-based Structural Alloys
,”
Plat. Surf. Finish.
0360-3164,
74
, pp.
50
56
.
7.
Bouyaghroumni
,
A.
,
Versaud
,
P.
, and
Vittori
,
O.
, 1996, “
Electrodeposition of Co-Ni on Aluminum Plate from Chloride Bath
,”
Can. Metall. Q.
0008-4433,
35
, pp.
245
253
.
8.
Atanassov
,
N.
, and
Schils
,
H. W.
, 1999, “
Influence of Structural Parameters on the Properties of Electrolytic Ni-Mn-S Deposits
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
51
57
.
9.
Lu
,
L.
,
Shen
,
Y. F.
,
Chen
,
X. H.
,
Qian
,
L. H.
, and
Lu
,
K.
, 2004, “
Ultrahigh Strength and High Electrical Conductivity in Copper
,”
Science
0036-8075,
304
, pp.
422
426
.
10.
Zhang
,
S.
,
Sun
,
D.
,
Fu
,
Y. Q.
, and
Du
,
H. J.
, 2003, “
Recent Advances of Superhard Nanocomposite Coatings: A Review
,”
Surf. Coat. Technol.
0257-8972,
167
, pp.
113
119
.
11.
Stojak
,
J. L.
,
Fransaer
,
J.
, and
Talbot
,
J. B.
, 2002, “
Review of Electrocodeposition
,” Advances in Electrochemical Science and Engineering, edited by
R. C.
Alkire
and
D. M.
Kolb
,
Weinheim
, Wiley-VCH, Vol.
7
, pp.
193
223
.
12.
Kuo
,
S. L.
,
Chen
,
Y. C.
,
Ger
,
M. D.
, and
Hwu
,
W. H.
, 2004, “
Nano-particles Dispersion Effect on Ni∕Al2O3 Composite Coatings
,”
Mater. Chem. Phys.
0254-0584,
86
, pp.
5
10
.
13.
Gyftou
,
P.
,
Stroumbouli
,
M.
,
Pavlatou
,
E. A.
, and
Spyrellis
,
N.
, 2002, “
Electrodeposition of Ni∕SiC Composites by Pulse Electrolysis
,”
Trans. Inst. Met. Finish.
0020-2967,
80
, pp.
88
91
.
14.
Podlaha
,
E. J.
, 2001, “
Selective Electrodeposition of Nanoparticulates into Metal Matrices
,”
Nano Lett.
1530-6984,
1
, pp.
413
416
.
15.
Kruger
,
H. G.
,
Knote
,
A.
,
Schindler
,
U.
,
Kern
,
H.
, and
Boccaccini
,
A. R.
, 2004, “
Composite Ceramic-metal Coatings by Means of Combined Electrophoretic Deposition and Galvanic Methods
,”
J. Mater. Sci.
0022-2461,
39
, pp.
839
844
.
16.
Burzynska
,
L.
,
Rudnik
,
E.
,
Blaz
,
L.
,
Kotula
,
M.
,
Sierpinski
,
Z.
, and
Szymanski
,
W.
, 2003, “
The Influence of Current Density and Bath Composition on the Electrodeposition of Nickel and Nickel/silicon Carbide Composite
,”
Trans. Inst. Met. Finish.
0020-2967,
81
, pp.
193
198
.
17.
Qu
,
N. S.
,
Chan
,
K. C.
, and
Zhu
,
D.
, 2004, “
Pulse Co-Electrodeposition of Nano Al2O3 Whiskers Nickel Composite Coating
,”
Scr. Mater.
1359-6462,
50
, pp.
1131
1134
.
18.
Boccaccini
,
A. R.
, and
Zhitomirsky
,
I.
, 2002, “
Application of Electrophoretic and Electrolytic Deposition Techniques in Ceramics Processing
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
6
, pp.
251
260
.
19.
Teruyama
,
S.
,
Shrestha
,
N. K.
,
Ito
,
Y.
,
Iwanaga
,
M.
, and
Saji
,
T.
, 2004, “
Plating of Ni∕C-BN Composite Film in Two Steps
,”
J. Mater. Sci.
0022-2461,
39
, pp.
2941
2943
.
20.
Xue
,
Y. J.
,
Zhu
,
D.
, and
Zhao
,
F.
, 2004, “
Electrodeposition and Mechanical Properties of Ni-La2O3 Nanocomposites
,”
J. Mater. Sci.
0022-2461,
39
, pp.
4063
4066
.
21.
Chan
,
K. C.
,
Wang
,
C. L.
,
Zhang
,
K. F.
, and
Pang
,
G.
, 2004, “
Superplastic Deformation Behavior of the Electrocodeposited Ni∕SiC Composite
,”
Scr. Mater.
1359-6462,
51
, pp.
605
609
.
22.
Kumar
,
K.
,
Chandramohan
,
R.
, and
Kalyanaraman
,
D.
, 2004, “
Effect of Heat Treatment on Cobalt and Nickel Electroplated Surfaces with Cr2O3 Dispersions
,”
Appl. Surf. Sci.
0169-4332,
227
, pp.
383
386
.
23.
Wang
,
S. C.
, and
Wei
,
W. C. J.
, 2003, “
Characterization of Electroplated Ni∕SiC and Ni∕Al2O3 Composite Coatings Bearing Nanoparticles
,”
J. Mater. Res.
0884-2914,
18
, pp.
1566
1574
.
24.
Palumbo
,
G.
,
Gonzalez
,
F.
,
Tomantschger
,
K.
,
Erb
,
U.
, and
Aust
,
K. T.
, 2003, “
Nanotechnology Opportunities for Electroplating Industries
,”
Plat. Surf. Finish.
0360-3164,
90
, pp.
36
45
.
25.
Zimmerman
,
A. F.
,
Palumbo
,
G.
,
Aust
,
K. T.
, and
Erb
,
U.
, 2002, “
Mechanical Properties of Nickel Silicon Carbide Nanocomposites
,”
Mater. Sci. Eng., A
0921-5093,
328
, pp.
137
146
.
26.
Gay
,
P. A.
, and
Bercot
,
P.
, 2001, “
Electrodeposition and Characterisation of Ag-ZrO2 Electroplated Coatings
,”
Surf. Coat. Technol.
0257-8972,
140
, pp.
147
154
.
27.
Peng
,
X.
,
Li
,
T.
,
Wu
,
W.
, and
Pan
,
W. P.
, 2001, “
Effect of La2O3 Particles on Microstructure and Cracking-Resistance of NiO Scale on Electrodeposited Nickel Films
,”
Mater. Sci. Eng., A
0921-5093,
298
, pp.
100
109
.
28.
Kim
,
S. K.
, and
Yoo
,
H. J.
, 1998, “
Formation of Bilayer Ni-SiC Composite Coatings by Electrodeposition
,”
Surf. Coat. Technol.
0257-8972,
108
, pp.
264
569
.
29.
Cheng
,
D. H.
,
Xu
,
W. Y.
,
Hua
,
L. Q.
,
Zhang
,
Z. Y.
, and
Wan
,
X. J.
, 1998, “
Electrochemical Preparation & Mechanical Properties of Amorphous Nickel-SiC Composites
,”
Plat. Surf. Finish.
0360-3164,
85
, pp.
61
64
.
30.
Malone
,
G. A.
, 1991, “
Electrodeposition of Dispersion-strengthened Alloys
,”
Plat. Surf. Finish.
0360-3164,
78
, pp.
58
62
.
31.
Muller
,
R.
,
Schmid
,
P.
,
Munding
,
A.
,
Gronmaier
,
R.
, and
Kohn
,
E.
, 2003, “
Elements for Surface Microfluidics in Diamond
,”
Diamond Relat. Mater.
0925-9635,
13
, pp.
780
784
.
32.
Rebeiz
,
G. M.
, 2003,
RF MEMS: Theory, Design and Technology
, Wiley, Hoboken.
33.
Zhao
,
Y. P.
, and
Wang
,
L. S.
, 2003, “
Mechanics of Adhesion in MEMS—A Review
,”
J. Adhes. Sci. Technol.
0169-4243,
17
, pp.
519
546
.
34.
Stojak
,
J. L.
, and
Talbot
,
J. B.
, 1999, “
Investigation of Electrodeposition Using a Rotating Cylinder Electrode
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
4504
4513
.
35.
Kuo
,
S. L.
,
Chen
,
Y. C.
,
Ger
,
M. D.
, and
Hwu
,
W. H.
, 2004, “
Nano-Particles Dispersion Effect on Ni∕Al2O3 Composite Coatings
,”
Mater. Chem. Phys.
0254-0584,
86
, pp.
5
10
.
36.
Hu
,
F.
, and
Chan
,
K. C.
, 2004, “
Electrodeposition Behavior of Ni-SiC Composite under Different Shaped Waveform
,”
Appl. Surf. Sci.
0169-4332,
233
, pp.
163
171
.
37.
Barkleit
,
G.
,
Grahl
,
A.
,
Maccagni
,
M.
,
Olper
,
M.
,
Scharf
,
P.
, and
Wagner
,
R.
, 1999, “
Electrodeposited, Dispersion-Hardened, Lightweight Grids for Lead-Acid Batteries
,”
J. Power Sources
0378-7753,
78
, pp.
73
78
.
38.
Bon
,
P.
,
Zhitomirsky
,
I.
, and
Embury
,
J. D.
, 2004, “
Electrodeposition of Composite Iron Oxide-Polyelectrolyte Films
,”
Mater. Chem. Phys.
0254-0584,
86
, pp.
44
50
.
39.
Eng
,
Y.
, 1991, “
Electrocodeposition of Metal and Colloidal Particle Composite Films onto a Rotating Cylinder Electrode
,” Ph.D. thesis, Columbia University.
40.
Lowenheim
,
A. F.
, 1978,
Electroplating
,
McGraw–Hill
, New York.
41.
Budevski
,
E.
,
Staikov
,
G.
, and
Lorenz
,
W. J.
, 1996,
Electrochemical Phase Formation and Growth: An Introduction to the Initial Stages of Metal Deposition
,
VCH Publishers
, New York.
42.
Chen
,
X.
, and
Vlassak
,
J. J.
, 2001, “
A Numerical Study on the Measurement of Thin Film Mechanical Properties By Means of Nanoindentation
,”
J. Mater. Res.
0884-2914,
16
, pp.
2974
2982
.
43.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
, pp.
1564
1583
.
44.
Ogawa
,
J.
, 1974,
Statistical Theory of the Analysis of Experimental Designs
,
Marcel Dekker
, New York.
45.
Senturia
,
S. D.
, 2001,
Microsystem Design
,
Kluwer Academic
, Boston.
You do not currently have access to this content.